Skip to main content Accessibility help
×
Home

Nonlinear flow-induced instability of an elastically mounted pitching wing

  • Yuanhang Zhu (a1), Yunxing Su (a1) and Kenneth Breuer (a1)

Abstract

We experimentally study the nonlinear flow-induced instability of an elastically mounted pitching wing in a circulating water tunnel. The structural parameters of the finite-span wing are simulated and regulated using a cyber-physical control system. At a small fixed damping, we systematically vary the stiffness of the wing for different inertia values to test for the stability boundaries of the system. We observe that, for a high-inertia wing, the system dynamics bifurcates from stable fixed points to small-amplitude oscillations followed by large-amplitude limit-cycle oscillations (LCOs) via a subcritical bifurcation, which features hysteretic bistability and an abrupt amplitude jump. Under this condition, the pitching frequency of the wing locks onto its structural frequency and the oscillation is dominated by the inertial force, corresponding to a structural mode. Force and flow field measurements indicate the presence of a secondary leading-edge vortex (LEV). As the wing inertia decreases, the width of the bistable region shrinks. At a sufficiently low inertia, the pitching amplitude changes smoothly with the stiffness without any hysteresis, revealing a supercritical bifurcation. Under this condition, no lock-in phenomenon is observed and the pitching frequency remains relatively constant at a value lower than the structural frequency. Force decomposition shows dominating fluid force, indicating a hydrodynamic mode. The secondary LEV is absent. We show that the onset of large-amplitude LCOs in both the structural mode and the hydrodynamic mode scales with the Cauchy number, and the LCOs in the structural mode collapse with the non-dimensional velocity. We examine the subcritical transition in detail; we find that this transition depends on the static characteristics of the wing, and the secondary LEV starts to emerge at the early stage of the transition. Lastly, we adopt an energy approach to map out the stability of the system and explain the existence of the two distinct types of bifurcations observed for different inertia values.

Copyright

Corresponding author

Email address for correspondence: yuanhang_zhu@brown.edu

References

Hide All
Amandolese, X., Michelin, S. & Choquel, M. 2013 Low speed flutter and limit cycle oscillations of a two-degree-of-freedom flat plate in a wind tunnel. J. Fluids Struct. 43, 244255.
Baik, Y. S., Bernal, L. P., Granlund, K. & Ol, M. V. 2012 Unsteady force generation and vortex dynamics of pitching and plunging aerofoils. J. Fluid Mech. 709, 3768.
Barnes, C. J. & Visbal, M. R. 2018 On the role of flow transition in laminar separation flutter. J. Fluids Struct. 77, 213230.
Beatus, T. & Cohen, I. 2015 Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring. Phys. Rev. E 92 (2), 022712.
Bergou, A. J., Ristroph, L., Guckenheimer, J., Cohen, I. & Wang, Z. J. 2010 Fruit flies modulate passive wing pitching to generate in-flight turns. Phys. Rev. Lett. 104 (14), 148101.
Bergou, A. J., Xu, S. & Wang, Z. J. 2007 Passive wing pitch reversal in insect flight. J. Fluid Mech. 591, 321337.
Bhat, S. S. & Govardhan, R. N. 2013 Stall flutter of NACA 0012 airfoil at low Reynolds numbers. J. Fluids Struct. 41, 166174.
Boudreau, M., Dumas, G., Rahimpour, M. & Oshkai, P. 2018 Experimental investigation of the energy extraction by a fully-passive flapping-foil hydrokinetic turbine prototype. J. Fluids Struct. 82, 446472.
Dimitriadis, G. & Li, J. 2009 Bifurcation behavior of airfoil undergoing stall flutter oscillations in low-speed wind tunnel. AIAA J. 47 (11), 25772596.
Dowell, E., Edwards, J. & Strganac, T. 2003 Nonlinear aeroelasticity. J. Aircraft 40 (5), 857874.
Dowell, E. H., Curtiss, H. C., Scanlan, R. H. & Sisto, F. 1989 A Modern Course in Aeroelasticity. Springer.
Dowell, E. H. & Hall, K. C. 2001 Modeling of fluid-structure interaction. Annu. Rev. Fluid Mech. 33 (1), 445490.
Duarte, L., Dellinger, N., Dellinger, G., Ghenaim, A. & Terfous, A. 2019 Experimental investigation of the dynamic behaviour of a fully passive flapping foil hydrokinetic turbine. J. Fluids Struct. 88, 112.
Dugundji, J. 2008 Some aeroelastic and nonlinear vibration problems encountered on the journey to Ithaca. AIAA J. 46 (1), 2135.
Eldredge, J. D. & Jones, A. R. 2019 Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51, 75104.
Fagley, C., Seidel, J. & McLaughlin, T. 2016 Cyber-physical flexible wing for aeroelastic investigations of stall and classical flutter. J. Fluids Struct. 67, 3447.
Garrick, I. E. 1936 Propulsion of a flapping and oscillating airfoil. NACA Tech. Rep. 567.
Govardhan, R. & Williamson, C. H. K. 2000 Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 420, 85130.
Govardhan, R. & Williamson, C. H. K. 2002 Resonance forever: existence of a critical mass and an infinite regime of resonance in vortex-induced vibration. J. Fluid Mech. 473, 147166.
Granlund, K. O., Ol, M. V. & Bernal, L. P. 2013 Unsteady pitching flat plates. J. Fluid Mech. 733, R5.
Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y.-C. & Ho, C.-M. 2003 Unsteady aerodynamics and flow control for flapping wing flyers. Prog. Aerosp. Sci. 39 (8), 635681.
Hover, F. S., Miller, S. N. & Triantafyllou, M. S. 1997 Vortex-induced vibration of marine cables: experiments using force feedback. J. Fluids Struct. 11 (3), 307326.
Ishihara, D., Yamashita, Y., Horie, T., Yoshida, S. & Niho, T. 2009 Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing. J. Expl Biol. 212 (23), 38823891.
Jafferis, N. T., Helbling, E. F., Karpelson, M. & Wood, R. J. 2019 Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 570 (7762), 491495.
Jantzen, R. T., Taira, K., Granlund, K. O. & Ol, M. V. 2014 Vortex dynamics around pitching plates. Phys. Fluids 26 (5), 053606.
Jin, Y., Kim, J.-T., Fu, S. & Chamorro, L. P. 2019 Flow-induced motions of flexible plates: fluttering, twisting and orbital modes. J. Fluid Mech. 864, 273285.
Khalak, A. & Williamson, C. H. K. 1996 Dynamics of a hydroelastic cylinder with very low mass and damping. J. Fluids Struct. 10 (5), 455472.
Kim, D., Cossé, J., Cerdeira, C. H. & Gharib, M. 2013 Flapping dynamics of an inverted flag. J. Fluid Mech. 736, R1.
Lee, J. H., Xiros, N. & Bernitsas, M. M. 2011 Virtual damper-spring system for VIV experiments and hydrokinetic energy conversion. Ocean Engng 38 (5–6), 732747.
Mackowski, A. W. & Williamson, C. H. K. 2011 Developing a cyber-physical fluid dynamics facility for fluid-structure interaction studies. J. Fluids Struct. 27 (5–6), 748757.
McCroskey, W. J. 1982 Unsteady airfoils. Annu. Rev. Fluid Mech. 14 (1), 285311.
Menon, K. & Mittal, R. 2019 Flow physics and dynamics of flow-induced pitch oscillations of an airfoil. J. Fluid Mech. 877, 582613.
Morse, T. L. & Williamson, C. H. K. 2009 Prediction of vortex-induced vibration response by employing controlled motion. J. Fluid Mech. 634, 539.
Navrose, & Mittal, S. 2017 The critical mass phenomenon in vortex-induced vibration at low Re. J. Fluid Mech. 820, 159186.
Onoue, K. & Breuer, K. S. 2016 Vortex formation and shedding from a cyber-physical pitching plate. J. Fluid Mech. 793, 229247.
Onoue, K. & Breuer, K. S. 2017 A scaling for vortex formation on swept and unswept pitching wings. J. Fluid Mech. 832, 697720.
Onoue, K., Song, A., Strom, B. & Breuer, K. S. 2015 Large amplitude flow-induced oscillations and energy harvesting using a cyber-physical pitching plate. J. Fluids Struct. 55, 262275.
Peng, Z. & Zhu, Q. 2009 Energy harvesting through flow-induced oscillations of a foil. Phys. Fluids 21 (12), 123602.
Poirel, D., Harris, Y. & Benaissa, A. 2008 Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers. J. Fluids Struct. 24 (5), 700719.
Poirel, D., Metivier, V. & Dumas, G. 2011 Computational aeroelastic simulations of self-sustained pitch oscillations of a NACA0012 at transitional Reynolds numbers. J. Fluids Struct. 27 (8), 12621277.
Poirel, D. & Yuan, W. 2010 Aerodynamics of laminar separation flutter at a transitional Reynolds number. J. Fluids Struct. 26 (7–8), 11741194.
Rao, S. S. 1995 Mechanical Vibrations. Addison-Wesley.
Razak, N. A., Andrianne, T. & Dimitriadis, G. 2011 Flutter and stall flutter of a rectangular wing in a wind tunnel. AIAA J. 49 (10), 22582271.
Sharma, A. & Visbal, M. 2019 Numerical investigation of the effect of airfoil thickness on onset of dynamic stall. J. Fluid Mech. 870, 870900.
Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C.-K., Cesnik, C. E. S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46 (7), 284327.
Strickland, J. H. & Graham, G. M. 1987 Force coefficients for a NACA-0015 airfoil undergoing constant pitch rate motions. AIAA J. 25 (4), 622624.
Strogatz, S. H. 1994 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books.
Su, Y & Breuer, K. S. 2019 Resonant response and optimal energy harvesting of an elastically mounted pitching and heaving hydrofoil. Phys. Rev. Fluids 4 (6), 064701.
Theodorsen, T. 1935 General theory of aerodynamic instability and the mechanism of flutter. NACA Tech. Rep. 496.
Tzezana, G. A. & Breuer, K. S. 2019 Thrust, drag and wake structure in flapping compliant membrane wings. J. Fluid Mech. 862, 871888.
Veilleux, J.-C. & Dumas, G. 2017 Numerical optimization of a fully-passive flapping-airfoil turbine. J. Fluids Struct. 70, 102130.
Wang, Z., Du, L., Zhao, J. & Sun, X. 2017 Structural response and energy extraction of a fully passive flapping foil. J. Fluids Struct. 72, 96113.
Wang, Z. J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183210.
Williamson, C. H. K. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.
Wu, K. S., Nowak, J. & Breuer, K. S. 2019 Scaling of the performance of insect-inspired passive-pitching flapping wings. J. R. Soc. Interface 16 (161), 20190609.
Xiao, Q. & Zhu, Q. 2014 A review on flow energy harvesters based on flapping foils. J. Fluids Struct. 46, 174191.
Young, J., Ashraf, M. A., Lai, J. C. S. & Platzer, M. F. 2013 Numerical simulation of fully passive flapping foil power generation. AIAA J. 51 (11), 27272739.
Young, J., Lai, J. C. S. & Platzer, M. F. 2014 A review of progress and challenges in flapping foil power generation. Prog. Aerosp. Sci. 67, 228.
Zhu, Q. 2011 Optimal frequency for flow energy harvesting of a flapping foil. J. Fluid Mech. 675, 495517.
Zhu, Q. 2012 Energy harvesting by a purely passive flapping foil from shear flows. J. Fluids Struct. 34, 157169.
Zhu, Q., Haase, M. & Wu, C. H. 2009 Modeling the capacity of a novel flow-energy harvester. Appl. Math. Model. 33 (5), 22072217.
Zhu, Q. & Peng, Z. 2009 Mode coupling and flow energy harvesting by a flapping foil. Phys. Fluids 21 (3), 033601.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Zhu et al. supplementary movie 1
Vorticity field of flow-induced oscillations for the high-inertia wing.

 Video (5.8 MB)
5.8 MB
VIDEO
Movies

Zhu et al. supplementary movie 2
Vorticity field of flow-induced oscillations for the low-inertia wing.

 Video (2.1 MB)
2.1 MB

Nonlinear flow-induced instability of an elastically mounted pitching wing

  • Yuanhang Zhu (a1), Yunxing Su (a1) and Kenneth Breuer (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.