Skip to main content Accessibility help
×
Home

The nonlinear dynamics of pendent drops on a thin film coating the underside of a ceiling

  • JOHN R. LISTER (a1), JOHN M. RALLISON (a1) and SIMON J. REES (a1)

Abstract

This paper considers the dynamics of a thin film of viscous liquid of density ρ coating the underside of a horizontal rigid boundary under the action of surface tension σ and gravity g, and in the lubrication limit. Gravitational instability for inverse wavenumbers larger than the capillary length ℓ = (σ/ρg)1/2) leads to the formation of quasi-static pendent drops of radius ≈3.83ℓ. If the boundary conditions are such as to pin the positions of the drops then the drops slowly drain fluid from the regions between them through thin annular trenches around each drop. A similarity solution is derived and verified numerically in which the film thickness in the intervening regions scales like t−1/4 and that in the trenches like t−1/2. A single drop placed far from boundaries on an otherwise uniform film, and given an initial perturbation, undergoes self-induced quasi-steady translation during which it grows slowly in amplitude by leaving a wake where the film thickness is reduced by an average of 90. It is driven by release of gravitational potential energy as fluid is collected from the film into the lower lying drop. Analysis of Landau–Levich regions around the perimeter of the translating drop predicts its speed and the profile of the wake. Two translating drops may coalesce if they collide, in contrast with the non-coalescence of colliding collars in the analogous one-dimensional problem (Lister et al., J. Fluid Mech. vol. 552, 2006b, p. 311). Colliding drops may also bounce off each other, the outcome depending on the angle of incidence through complex interactions between their surrounding capillary wave fields.

Copyright

Corresponding author

Email address for correspondence: lister@esc.cam.ac.uk

References

Hide All
Bertozzi, A. L. & Pugh, M. C. 1998 Long-wave instabilities and saturation in thin film equations. Commun. Pure Appl. Math. 51, 625661.
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.
Burgess, D. & Foster, M. R. 1990 Analysis of the boundary conditions for a Hele-Shaw bubble. Phys. Fluids 2, 11051117.
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover.
Fermigier, M., Limat, L., Wesfreid, J. E., Boudinet, P. & Quilliet, C. 1992 Two-dimensional patterns in Rayleigh–Taylor instability of a thin-layer. J. Fluid Mech. 236, 349383.
Fetzer, R., Jacobs, K., Münch, A., Wagner, B. & Witelski, T. P. 2005 New slip regimes and the shape of dewetting thin liquid films. Phys. Rev. Lett. 95, 127801.
Glasner, K. B. 2007 Dynamics of pendent drops on a one-dimensional surface. Phys. Fluids 19, 102104.
Glasner, K. B. & Witelski, T. P. 2003 Coarsening dynamics of dewetting films. Phys. Rev. E 67, 016302.
Gratton, M. B. & Witelski, T. P. 2008 Coarsening of unstable thin films subject to gravity. Phys. Rev. E 77, 016301.
Hammond, P. S. 1983 Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical tube. J. Fluid Mech. 137, 363384.
Hodges, S. R., Jensen, O. E. & Rallison, J. M. 2004 Sliding, slipping and rolling: the sedimentation of a viscous drop down a gently inclined plane. J. Fluid Mech. 512, 95131.
Hynes, T. P. 1978 Stability of thin films. PhD Thesis. University of Cambridge, Cambridge, UK.
Jensen, O. E. 1997 The thin liquid lining of a weakly curved cylindrical tube J. Fluid Mech. 331, 373403.
Jones, A. F. & Wilson, S. D. R. 1978 The film drainage problem in droplet coalescence. J. Fluid Mech. 87, 263288.
King, J. R. & Bowen, M. 2001 Moving boundary problems and non-uniqueness for the thin film equation. Eur. J. Appl. Math. 12, 321356.
Landau, L. D. & Levich, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. URSS 17, 4254.
Limat, L. 1993 Instabilité d'un liquide suspendu sous un surplomb solide: influence de l'épaisseur de la couche. C. R. Acad. Sci. Paris 317, 563568.
Limat, L., Jenffer, P., Dagens, B., Touron, E., Fermigier, M. & Wesfreid, J. E. 1992 Gravitational instabilities of thin liquid layers – dynamics of pattern selection. Physica D 61, 166182.
Lister, J. R. & Kerr, R. C. 1989 The effect of geometry on the gravitational instability of a buoyant region of viscous fluid. J. Fluid Mech. 202, 577594.
Lister, J. R., Morrison, N. F. & Rallison, J. R. 2006 a Sedimentation of a two-dimensional drop towards a rigid horizontal plane. J. Fluid Mech. 552, 345351.
Lister, J. R., Rallison, J. R., King, A. A., Cummings, L. J. & Jensen, O. E. 2006 b Capillary drainage of an annular film: the dynamics of collars and lobes. J. Fluid Mech. 552, 311343.
Nettleton, L. L. 1934 Fluid mechanics of salt domes. Bull. Am. Assoc. Pet. Geol. 18, 175204.
Newhouse, L. A. & Pozrikidis, C. 1990 The Rayleigh–Taylor instability of a viscous-liquid layer resting on a plane wall. J. Fluid Mech. 217, 615638.
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.
Protiere, S., Bohn, S. & Couder, Y. 2008 Exotic orbits of two interacting wave sources. Phys. Rev. E 78, 036204.
Selig, F. 1965 A theoretical prediction of salt dome patterns. Geophysics 30, 633643.
Vrij, A. 1966 Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 42, 2333.
Weidner, D. E., Schwartz, L. W. & Eres, M. H. 2007 Suppression and reversal of drop formation in a model paint film. Chem. Prod. Process Model. 2, 130. doi:10.2202/1934-2659.1078.
Whitehead, J. A. & Luther, D. S. 1975 Dynamics of laboratory diapir and plume models. J. Geophys. Res. 80, 705717.
Witelski, T. P. & Bowen, M. 2003 ADI schems for higher-order nonlinear diffusion equations. Appl. Numer. Math. 45, 331351.
Yiantsios, S. G. & Higgins, B. G. 1989 Rayleigh–Taylor instability in thin viscous films. Phys. Fluids A 1, 14841501.
Zhang, W. W. & Lister, J. R. 1999 Similarity solutions for van-der-Waals rupture of a thin film on a solid substrate. Phys. Fluids A 11, 24542462.
Zhornitskaya, L. & Bertozzi, A. L. 2000 Positivity-preserving numerical schemes for lubrication-type equations. SIAM J. Numer. Anal. 37 (2), 523555.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

The nonlinear dynamics of pendent drops on a thin film coating the underside of a ceiling

  • JOHN R. LISTER (a1), JOHN M. RALLISON (a1) and SIMON J. REES (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed