Skip to main content Accessibility help
×
Home

Nonlinear behaviour of the Mack mode in a hypersonic boundary layer

  • Stuart A. Craig (a1), Raymond A. Humble (a2), Jerrod W. Hofferth (a3) and William S. Saric (a2)

Abstract

Mack-mode waves are measured in a hypersonic boundary layer using high-frequency focusing schlieren deflectometry. Experiments are performed using a $5^{\circ }$ flared cone at $0^{\circ }$ angle of attack in the low-disturbance Mach 6 Quiet Tunnel at Texas A&M University across a free-stream unit Reynolds number range of $7.8\times 10^{6}~\text{m}^{-1}\leqslant \mathit{Re}^{\prime }\leqslant 11.0\times 10^{6}~\text{m}^{-1}$ . The high-frequency response of the measurement system allows harmonics and other nonlinear behaviour to be measured. Mack-mode waves and several harmonics are clearly observed at a frequency of $f_{0}\approx 250~\text{kHz}$ . Bispectral analysis is used to show that these waves undergo several quadratic phase-coupled sum and difference interactions with themselves to produce harmonics, as well interact with a relatively low-frequency wave that results in amplitude modulation. Bispectral analysis is used to highlight these interactions.

Copyright

Corresponding author

Email address for correspondence: sacraig@email.arizona.edu

References

Hide All
Blanchard, A. E., Lachowicz, J. T. & Wilkinson, S. P. 1997 NASA Langley Mach 6 quiet wind-tunnel performance. AIAA J. 35 (1), 2328.
Blanchard, A. E. & Selby, G. V.1996 An experimental investigation of wall-cooling effects on hypersonic boundary-layer stability in a quiet wind tunnel. Tech. Rep. NASA CR 198287.
Boedeker, L. R.1959 Analysis and construction of a sharp focussing schlieren system. MS thesis, Massachusetts Institute of Technology, Cambridge, MA.
Bountin, D. A., Shiplyuk, A. N. & Maslov, A. A. 2008 Evolution of nonlinear processes in a hypersonic boundary layer on a sharp cone. J. Fluid Mech. 611, 427442.
Chen, F.-J., Wilkinson, S. P. & Beckwith, I. E. 1993 Görtler instability and hypersonic quiet nozzle design. J. Spacecr. Rockets 30 (2), 170175.
Chen, X., Zhu, Y. & Lee, C. 2017 Interactions between second mode and low-frequency waves in a hypersonic boundary layer. J. Fluid Mech. 820, 693735.
Chokani, N. 1999 Nonlinear spectral dynamics of hypersonic laminar boundary layer flow. Phys. Fluids 11 (12), 38463851.
Chokani, N. 2005 Nonlinear evolution of Mack modes in a hypersonic boundary layer. Phys. Fluids 17 (1), 014102.
Collis, W. B., White, P. R. & Hammond, J. K. 1998 Higher-order spectra: the bispectrum and trispectrum. Mech. Syst. Signal Process. 12 (3), 375394.
Craik, A. D. D. 1971 Non-linear resonant instability in boundary layers. J. Fluid Mech. 50 (02), 393413.
Doggett, G. P., Chokani, N. & Wilkinson, S. P. 1997 Hypersonic boundary-layer stability experiments on a flared-cone model at angle of attack in a quiet wind tunnel. In 35th Aerospace Sciences Meeting and Exhibit, AIAA 97-0557. AIAA.
Fedorov, A. V. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.
Hader, C. & Fasel, H. F. 2018 Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances. J. Fluid Mech. 847, R3.
Hofferth, J. W., Bowersox, R. D. W. & Saric, W. S. 2010 The Mach 6 quiet tunnel at Texas A&M: quiet flow performance. In 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, AIAA 2010-4794. AIAA.
Hofferth, J. W., Humble, R. A., Floryan, D. C. & Saric, W. S. 2013 High-bandwidth optical measurements of the second-mode instability in a Mach 6 quiet tunnel. In 51st AIAA Aerospace Sciences Meeting, AIAA 2013-0378. AIAA.
Hofferth, J. W. & Saric, W. S. 2012 Boundary-layer transition on a flared cone in the Texas A&M Mach 6 quiet tunnel. In 50th AIAA Aerospace Sciences Meeting, AIAA 2012-0923. AIAA.
Horvath, T. J., Berry, S. A., Hollis, B. R., Chang, C.-L. & Singer, B. A. 2002 Boundary layer transition on slender cones in cnventional and low disturbance Mach 6 wind tunnels. In 32nd AIAA Fluid Dynamics Conference and Exhibit, AIAA 2002-2743. AIAA.
Keyes, F. G. 1951 A summary of viscosity and heat-conduction data for He, Ar, H2 , O2 , N2 , CO, CO2 , H2O, and Air. Trans. ASME 73, 589596.
Kim, Y. C. & Powers, E. J. 1979 Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Trans. Plasma Sci. 7 (2), 120131.
Kimmel, R. L. & Kendall, J. M. 1991 Nonlinear disturbances in a hypersonic laminar boundary layer. In 29th Aerospace Sciences Meeting, AIAA 91-0320. AIAA.
Kuehl, J. J. 2018 Thermoacoustic interpretation of second-mode instability. AIAA J. 56 (9), 35853592.
Lachowicz, J. T., Chokani, N. & Wilkinson, S. P. 1996 Boundary-layer stability measurements in a hypersonic quiet tunnel. AIAA J. 34 (12), 24962500.
Mack, L. M.1969 Boundary-layer stability theory. Tech. Rep., Jet Propulsion Laboratory, Doc. No. 900-277, Rev. A., Pasadena, CA.
Mack, L. M.1984 Boundary-layer linear stability theory. AGARD Rep. No. 709.
Settles, G. S. 2001 Schlieren and Shadowgraph Techniques. Springer.
Settles, G. S. & Hargather, M. J. 2017 A review of recent developments in schlieren and shadowgraph techniques. Meas. Sci. Technol. 28 (4), 042001.
Sivasubramanian, J. & Fasel, H. F. 2014 Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6. J. Fluid Mech. 756, 600649.
Sivasubramanian, J. & Fasel, H. F. 2015 Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown. J. Fluid Mech. 768, 175218.
Stetson, K. F. 1988 On nonlinear aspects of hypersonic boundary-layer stability. AIAA J. 26 (7), 883885.
Ward, C. A. C., Wheaton, B. M., Chou, A., Berridge, D. C., Letterman, L. E., Luersen, R. P. K. & Schneider, S. P. 2012 Hypersonic boundary-layer transition experiments in the Boeing/AFOSR Mach-6 quiet tunnel. In 50th AIAA Aerospace Sciences Meeting, AIAA 2012-0282. AIAA.
Weinstein, L. M. 1993 Large-field high-brightness focusing schlieren system. AIAA J. 31 (7), 12501255.
Welch, P. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Nonlinear behaviour of the Mack mode in a hypersonic boundary layer

  • Stuart A. Craig (a1), Raymond A. Humble (a2), Jerrod W. Hofferth (a3) and William S. Saric (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed