Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T12:51:01.969Z Has data issue: false hasContentIssue false

The nature of triad interactions in active turbulence

Published online by Cambridge University Press:  26 February 2018

Jonasz Słomka
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
Piotr Suwara
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
Jörn Dunkel*
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
*
Email address for correspondence: dunkel@mit.edu

Abstract

Generalised Navier–Stokes (GNS) equations describing three-dimensional active fluids with flow-dependent narrow spectral forcing have been shown to possess numerical solutions that can sustain significant energy transfer to larger scales by realising chiral Beltrami-type chaotic flows. To rationalise these findings, we study here the triad truncations of polynomial and Gaussian GNS models focusing on modes lying in the energy injection range. Identifying a previously unknown cubic invariant for the triads, we show that their asymptotic dynamics reduces to that of a forced rigid body coupled to a particle moving in a magnetic field. This analogy allows us to classify triadic interactions by their asymptotic stability: unstable triads correspond to rigid-body forcing along the largest and smallest principal axes, whereas stable triads arise from forcing along the middle axis. Analysis of the polynomial GNS model reveals that unstable triads induce exponential growth of energy and helicity, whereas stable triads develop a limit cycle of bounded energy and helicity. This suggests that the unstable triads dominate the initial relaxation stage of the full hydrodynamic equations, whereas the stable triads determine the statistically stationary state. To test whether this hypothesis extends beyond polynomial dispersion relations, we introduce and investigate an alternative Gaussian active turbulence model. Similar to the polynomial case, the steady-state chaotic flows in the Gaussian model spontaneously accumulate non-zero mean helicity while exhibiting Beltrami statistics and upward energy transport. Our results suggest that self-sustained Beltrami-type flows and an inverse energy cascade may arise generically in the presence of flow-dependent narrow spectral forcing.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexakis, A. 2017 Helically decomposed turbulence. J. Fluid Mech. 812, 752770.Google Scholar
Arnold, V. I. 1989 Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60. Springer.Google Scholar
Arnold, V. I. & Khesin, B. A. 1999 Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125. Springer.Google Scholar
Ascher, U. M., Ruuth, S. J. & Wetton, B. T. R. 1995 Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32 (3), 797823.CrossRefGoogle Scholar
Beresnev, I. A. & Nikolaevskiy, V. N. 1993 A model for nonlinear seismic waves in a medium with instability. Physica D 66, 16.Google Scholar
Biferale, L., Buzzicotti, M. & Linkmann, M. 2017 From two-dimensional to three-dimensional turbulence through two-dimensional three-component flows. Phys. Fluids 29, 111101.Google Scholar
Biferale, L., Musacchio, S. & Toschi, F. 2012 Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 108 (16), 164501.Google Scholar
Biferale, L., Musacchio, S. & Toschi, F. 2013 Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence. J. Fluid Mech. 730, 309327.Google Scholar
Borue, V. & Orszag, S. A. 1997 Spectra in helical three-dimensional homogeneous isotropic turbulence. Phys. Rev. E 55 (6), 7005.Google Scholar
Bratanov, V., Jenko, F. & Frey, E. 2015 New class of turbulence in active fluids. Proc. Natl Acad. Sci. USA 112 (49), 1504815053.CrossRefGoogle ScholarPubMed
Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. 2013 Emergence of macroscopic directed motion in populations of motile colloids. Nature 503 (7474), 9598.CrossRefGoogle ScholarPubMed
Brissaud, A., Frisch, U., Leorat, J., Lesieur, M. & Mazure, A. 1973 Helicity cascades in fully developed isotropic turbulence. Phys. Fluids 16 (8), 13661367.Google Scholar
Brotto, T., Caussin, J.-B., Lauga, E. & Bartolo, D. 2013 Hydrodynamics of confined active fluids. Phys. Rev. Lett. 110, 038101.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Constantin, P. & Majda, A. 1988 The Beltrami spectrum for incompressible fluid flows. Commun. Math. Phys. 115 (3), 435456.Google Scholar
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E. & Kessler, J. O. 2004 Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93 (9), 098103.CrossRefGoogle ScholarPubMed
Dunkel, J., Heidenreich, S., Drescher, K., Wensink, H. H., Bär, M. & Goldstein, R. E. 2013 Fluid dynamics of bacterial turbulence. Phys. Rev. Lett. 110 (22), 228102.CrossRefGoogle ScholarPubMed
Falkovich, G. & Sreenivasan, K. R. 2006 Lessons from hydrodynamic turbulence. Phys. Today 59 (4), 4349.Google Scholar
Frisch, U. 2004 Turbulence. Cambridge University Press.Google Scholar
Gantmacher, F. R. 2000 The Theory of Matrices, vol. 2. AMS Chelsea Publishing.Google Scholar
Giomi, L. 2015 Geometry and topology of turbulence in active nematics. Phys. Rev. X 5 (3), 031003.Google Scholar
Howse, J. R., Jones, R. A. L., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.Google Scholar
Hudson, S. R., Hole, M. J. & Dewar, R. L. 2007 Eigenvalue problems for beltrami fields arising in a three-dimensional toroidal magnetohydrodynamic equilibrium problem. Phys. Plasmas 14 (5), 052505.CrossRefGoogle Scholar
Ishikawa, T., Yoshida, N., Ueno, H., Wiedeman, M., Imai, Y. & Yamaguchi, T. 2011 Energy transport in a concentrated suspension of bacteria. Phys. Rev. Lett. 107 (2), 028102.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Kraichnan, R. H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59 (04), 745752.Google Scholar
Lee, J. M. 2013 Introduction to Smooth Manifolds, 2nd edn. Springer.Google Scholar
Lessinnes, T., Plunian, F. & Carati, D. 2009 Helical shell models for mhd. Theor. Comput. Fluid Dyn. 23 (6), 439.CrossRefGoogle Scholar
Linkmann, M., Berera, A., McKay, M. & Jäger, J. 2016 Helical mode interactions and spectral transfer processes in magnetohydrodynamic turbulence. J. Fluid Mech. 791, 6196.Google Scholar
Linkmann, M. & Dallas, V. 2017 Triad interactions and the bidirectional turbulent cascade of magnetic helicity. Phys. Rev. Fluids 2 (5), 054605.Google Scholar
Marchetti, M. C., Joanny, J. F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M. & Simha, R. A. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143.CrossRefGoogle Scholar
Marsh, G. E. 1996 Force-Free Magnetic Fields: Solutions, Topology and Applications. World Scientific.Google Scholar
Mendelson, N. H., Bourque, A., Wilkening, K., Anderson, K. R. & Watkins, J. C. 1999 Organized cell swimming motions in bacillus subtilis colonies: patterns of short-lived whirls and jets. J. Bacteriol. 181 (2), 600609.Google Scholar
Moffatt, H. K. 2014a Helicity and singular structures in fluid dynamics. Proc. Natl Acad. Sci. USA 111 (10), 36633670.Google Scholar
Moffatt, H. K. 2014b Note on the triad interactions of homogeneous turbulence. J. Fluid Mech. 741, R3.Google Scholar
Needleman, D. & Dogic, Z. 2017 Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048.Google Scholar
Pedley, T. J. 2010 Collective behaviour of swimming micro-organisms. Exp. Mech. 50, 12931301.CrossRefGoogle Scholar
Rathmann, N. M. & Ditlevsen, P. D. 2017 Pseudo-invariants contributing to inverse energy cascades in three-dimensional turbulence. Phys. Rev. Fluids 2, 054607.Google Scholar
Sahoo, G., Alexakis, A. & Biferale, L. 2017 Discontinuous transition from direct to inverse cascade in three-dimensional turbulence. Phys. Rev. Lett. 118 (16), 164501.Google Scholar
Saintillan, D. & Shelley, M. 2008 Instabilities, pattern formation and mixing in active suspensions. Phys. Fluids 20, 123304.Google Scholar
Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. 2012 Spontaneous motion in hierarchically assembled active matter. Nature 491, 431434.Google Scholar
Słomka, J. & Dunkel, J. 2017a Geometry-dependent viscosity reduction in sheared active fluids. Phys. Rev. Fluids 2, 043102.Google Scholar
Słomka, J. & Dunkel, J. 2017b Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3d active fluids. Proc. Natl Acad. Sci. USA 114 (9), 21192124.Google Scholar
Sokolov, A. & Aranson, I. S. 2012 Physical properties of collective motion in suspensions of bacteria. Phys. Rev. Lett. 109 (24), 248109.Google Scholar
Sokolov, A., Aranson, I. S., Kessler, J. O. & Goldstein, R. E. 2007 Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98 (15), 158102.Google Scholar
Tribelsky, M. I. 2008 Patterns in dissipative systems with weakly broken continuous symmetry. Phys. Rev. E 77, 035202.Google Scholar
Tribelsky, M. I. & Tsuboi, K. 1996 New scenario for transition to turbulence? Phys. Rev. Lett. 76, 16311634.Google Scholar
Urzay, J., Doostmohammadi, A. & Yeomans, J. M. 2017 Multi-scale statistics of turbulence motorized by active matter. J. Fluid Mech. 822, 762773.CrossRefGoogle Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4 (2), 350363.Google Scholar
Waleffe, F. 1993 Inertial transfers in the helical decomposition. Phys. Fluids A 5 (3), 677685.Google Scholar
Walther, A. & Muller, A. H. E. 2008 Janus particles. Soft Matt. 4, 663668.Google Scholar
Wensink, H. H., Dunkel, J., Heidenreich, S., Drescher, K., Goldstein, R. E., Löwen, H. & Yeomans, J. M. 2012 Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. USA 109 (36), 1430814313.Google Scholar
Wolgemuth, C. W. 2008 Collective swimming and the dynamics of bacterial turbulence. Biophys. J. 95 (4), 15641574.Google Scholar
Yoshida, Z., Mahajan, S. M., Ohsaki, S., Iqbal, M. & Shatashvili, N. 2001 Beltrami fields in plasmas: high-confinement mode boundary layers and high beta equilibria. Phys. Plasmas 8 (5), 21252131.Google Scholar