Skip to main content Accessibility help

Multiple states for flow through a collapsible tube with discontinuities

  • A. Siviglia (a1) and M. Toffolon (a2)


We study the occurrence of the multiple steady states that flows in a collapsible tube can develop under the effect of: (i) geometrical alterations (e.g. stenosis), (ii) variations of the mechanical properties of the tube wall, or (iii) variations of the external pressure acting on the conduit. Specifically, if the approaching flow is supercritical, two steady flow states are possible in a restricted region of the parameter space: one of these flow states is wholly supercritical while the other produces an elastic jump that is located upstream of the variation. In the latter case the flow undergoes a transition through critical conditions in the modified segment of the conduit. Both states being possible, the actual state is determined by the past history of the system, and the parameter values show a hysteretic behaviour when shifting from one state to the other. First we set up the problem in a theoretical framework assuming stationary conditions, and then we analyse the dynamics numerically in a one-dimensional framework. Theoretical considerations suggest that the existence of multiple states is associated with non-uniqueness of the steady-state solution, which is confirmed by numerical simulations of the fully unsteady problem.


Corresponding author

Email address for correspondence:


Hide All
Baines, P. G. 1984 A unified description of two-layer flow over topography. J. Fluid Mech. 146, 127167.
Baines, P. G. 1995 Topographic Effects in Stratified Flows. Cambridge University Press.
Baines, P. G. & Davies, P. A. 1980 Laboratory studies of topographic effects in rotating and/or stratified fluids. In Orographic Effects in Planetary Flows, chap. 8, pp. 233299. GARP Publication no. 23, WMO/ICSU.
Bernetti, R., Titarev, V. A. & Toro, E. F. 2007 Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry. J. Comput. Phys. 227 (6), 32123243.
Bertram, C. D. 2004 Flow phenomena in floppy tubes. Contemp. Phys. 45 (1), 4560.
Bertram, C. D., Raymond, C. J. & Pedley, T. J. 1990 Mapping of instabilities during flow through collapsed tubes of different length. J. Fluids Struct. 4, 125153.
Bertram, C. D., Raymond, C. J. & Pedley, T. J. 1991 Application of nonlinear dynamics concepts to the analysis of self-excited oscillations of a collapsible tube conveying a fluid. J. Fluids Struct. 5, 391426.
Brook, B. S., Falle, S. A. E. G. & Pedley, T. J. 1999 Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state. J. Fluid Mech. 396, 223256.
Cowley, S. J. 1982 Elastic jumps on fluid-filled elastic tubes. J. Fluid Mech. 116, 459473.
Downing, J. M. & Ku, D. N. 1997 Effects of frictional losses and pulsatile flow on the collapse of stenotic arteries. Trans. ASME: J. Biomech. Engng 119, 317324.
Elad, D., Kamm, R. D. & Shapiro, A. H. 1987 Choking phenomena in a lung-like model. Trans. ASME: J. Biomech. Engng 109, 192.
Elad, D., Kamm, R. D. & Shapiro, A. H. 1988 Mathematical simulation of forced expiration. J. Appl. Physiol. 65, 1425.
Grotberg, J. B. 1994 Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26, 529571.
Grotberg, J. B. & Jensen, O. E. 2004 Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36, 121147.
Hayashi, S., Hayase, T. & Kawamura, H. 1998 Numerical analysis for stability and self-excited oscillation in collapsible tube flow. Trans. ASME: J. Biomech. Engng 120 (4), 468475.
Heil, M. & Hazel, A. L. 2011 Fluid–structure interaction in internal physiological flows. Annu. Rev. Fluid Mech. 43, 141162.
Jensen, O. E. 1990 Instabilities of flow in a collapsed tube. J. Fluid Mech. 220, 623659.
Kamm, R. D. & Shapiro, A. H. 1979 Unsteady flow in a collapsible tube subjected to external pressure or body forces. J. Fluid Mech. 95, 178.
Kececioglu, I., McClurken, M. E., Kamm, R. & Shapiro, A. H. 1981 Steady, supercritical flow in collapsible tubes. Part 1. Experimental observations. J. Fluid Mech. 109, 367389.
Ku, D. N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399434.
Müller, L. O. & Toro, E. F. 2013 Well-balanced high-order solver for blood flow in networks of vessels with variable properties. Intl J. Numer. Meth. Biomed. Engng 29 (12), 13881411.
Müller, L. O. & Toro, E. F. 2014 A global multi-scale mathematical model for the human circulation with emphasis on the venous system. Intl J. Numer. Meth. Biomed. Engng 30 (7), 681725.
Pedley, T. J. 2000 Blood flow in arteries and veins. In Perspectives in Fluid Dynamics (ed. Batchelor, G. K., Moffat, H. K. & Worster, M. G.), pp. 105158. Cambridge University Press.
Pedley, T. J., Brook, B. S. & Seymour, R. S. 1996 Blood pressure and flow rate in the giraffe jugular vein. Phil. Trans. R. Soc. Lond. B 351, 855866.
Pratt, L. J. 1983 A note on nonlinear flow over obstacles. Geophys. Astrophys. Fluid Dyn. 24, 6368.
Reyn, J. W. 1987 Multiple solutions and flow limitation for steady flow through a collapsible tube held open at the ends. J. Fluid Mech. 174, 467493.
Shapiro, A. H. 1977 Steady flow in collapsible tubes. Trans. ASME: J. Biomech. Engng 99, 126147.
Siviglia, A. & Toffolon, M. 2013 Steady analysis of transcritical flows in collapsible tubes with discontinuous mechanical properties: implications for arteries and veins. J. Fluid Mech. 736, 195215.
Skalak, P., O’zkaya, N. & Skalak, T. C. 1989 Biofluid mechanics. Annu. Rev. Fluid Mech. 21, 167204.
Toro, E. F. & Siviglia, A. 2013 Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions. Commun. Comput. Phys. 13 (2), 361385.
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Multiple states for flow through a collapsible tube with discontinuities

  • A. Siviglia (a1) and M. Toffolon (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed