Skip to main content Accessibility help

A multi-parameter criterion for layer formation in a stratified shear flow using sorted buoyancy coordinates

  • J. R. Taylor (a1) and Q. Zhou (a1)


Here, we examine the conditions for layer formation in a stratified shear flow. We reformulate the conditions for amplification of small perturbations to a uniform stratification first proposed by Phillips (Deep Sea Research and Oceanographic Abstracts, vol. 19, 1972, pp. 79–81, Elsevier) and Posmentier (J. Phys. Oceanogr., vol. 7 (2), 1977, pp. 298–300) using the sorted buoyancy coordinates introduced by Nakamura (J. Atmos. Sci., vol. 53 (11), 1996, pp. 1524–1537) and Winters & D’Asaro (J. Fluid Mech., vol. 317, 1996, pp. 179–193). We consider the possible dependence of the effective diffusivity on three non-dimensional parameters, the gradient Richardson number, the buoyancy Reynolds number and the Prandtl number, and obtain a simple expression for conditions favourable for layer formation. The new framework is applied to direct numerical simulations of stratified shear flow. We then apply a recent multi-parameter parameterization developed by Salehipour et al. (Geophys. Res. Lett., vol. 43 (7), 2016, pp. 3370–3379), which suggests that layer formation is favoured for large Prandtl numbers and moderate to large values of the gradient Richardson and buoyancy Reynolds numbers.


Corresponding author

Email address for correspondence:


Hide All
Bartello, P. & Tobias, S. M. 2013 Sensitivity of stratified turbulence to the buoyancy Reynolds number. J. Fluid Mech. 725, 122.
Bouffard, D. & Boegman, L. 2013 A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Oceans 61, 1434.
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.
Deusebio, E., Caulfield, C. P. & Taylor, J. R. 2015 The intermittency boundary in stratified plane Couette flow. J. Fluid Mech. 781, 298329.
Dillon, T. M. & Caldwell, D. R. 1980 The Batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res. Oceans 85 (C4), 19101916.
Gargett, A. E., Osborn, T. R. & Nasmyth, P. W. 1984 Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech. 144, 231280.
Garrett, C. & Munk, W. 1971 Internal wave spectra in the presence of fine-structure. J. Phys. Oceanogr. 1 (3), 196202.
Holford, J. M. & Linden, P. F. 1999 Turbulent mixing in a stratified fluid. Dyn. Atmos. Oceans 30 (2), 173198.
Linden, P. F. 1979 Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn. 13 (1), 323.
Linden, P. F. 1980 Mixing across a density interface produced by grid turbulence. J. Fluid Mech. 100 (04), 691703.
Lozovatsky, I. D. & Fernando, H. J. S. 2013 Mixing efficiency in natural flows. Phil. Trans. R. Soc. Lond. A 371 (1982), 20120213.
Mater, B. D. & Venayagamoorthy, S. K. 2014a The quest for an unambiguous parameterization of mixing efficiency in stably stratified geophysical flows. Geophys. Res. Lett. 41 (13), 46464653.
Mater, B. D. & Venayagamoorthy, S. K. 2014b A unifying framework for parameterizing stably stratified shear-flow turbulence. Phys. Fluids 26 (3), 036601.
Nakamura, N. 1996 Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci. 53 (11), 15241537.
Park, Y.-G., Whitehead, J. A. & Gnanadeskian, A. 1994 Turbulent mixing in stratified fluids: layer formation and energetics. J. Fluid Mech. 279, 279311.
Pelegrí, J. L. & Sangrà, P. 1998 A mechanism for layer formation in stratified geophysical flows. J. Geophys. Res. Oceans 103 (C13), 3067930693.
Peltier, W. R. & Caulfield, C. P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35 (1), 135167.
Phillips, O. M. 1972 Turbulence in a strongly stratified fluid – is it unstable? In Deep Sea Research and Oceanographic Abstracts, vol. 19, pp. 7981. Elsevier.
Portwood, G., de Bruyn Kops, S., Taylor, J. R., Salehipour, H. & Caulfield, C. P. 2016 Robust identification of dynamically distinct regions in stratified turbulence. J. Fluid Mech. 807, R2.
Posmentier, E. S. 1977 The generation of salinity finestructure by vertical diffusion. J. Phys. Oceanogr. 7 (2), 298300.
Radko, T. 2016 Thermohaline layering in dynamically and diffusively stable shear flows. J. Fluid Mech. 805, 147170.
Ruddick, B. R., McDougall, T. J. & Turner, J. S. 1989 The formation of layers in a uniformly stirred density gradient. Deep Sea Res. A 36 (4), 597609.
Salehipour, H. & Peltier, W. R. 2015 Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence. J. Fluid Mech. 775, 464500.
Salehipour, H., Peltier, W. R., Whalen, C. B. & MacKinnon, J. A. 2016 A new characterization of the turbulent diapycnal diffusivities of mass and momentum in the ocean. Geophys. Res. Lett. 43 (7), 33703379.
Schmitt, R. W. 1994 Double diffusion in oceanography. Annu. Rev. Fluid Mech. 26 (1), 255285.
Shih, L. H., Koseff, J. R., Ivey, G. N. & Ferziger, J. H. 2005 Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech. 525, 193214.
Smyth, W. D. & Moum, J. N. 2000 Length scales of turbulence in stably stratified mixing layers. Phys. Fluids 12 (6), 13271342.
Taylor, J. R. 2008 Numerical Simulations of the Stratified Oceanic Bottom Boundary Layer. University of California.
Taylor, J. R., Deusebio, E., Caulfield, C. P. & Kerswell, R. R. 2016 A new method for isolating turbulent states in transitional stratified plane Couette flow. J. Fluid Mech. 808, R1.
Thorpe, S. A. 2016 Layers and internal waves in uniformly stratified fluids stirred by vertical grids. J. Fluid Mech. 793, 380413.
Tseng, Y. & Ferziger, J. H. 2001 Mixing and available potential energy in stratified flows. Phys. Fluids 13, 12811293.
Winters, K. B. & D’Asaro, E. A. 1996 Diascalar flux and the rate of fluid mixing. J. Fluid Mech. 317, 179193.
Zhou, Q., Taylor, J. R., Caulfield, C. P. & Linden, P. F. 2017 Diapycnal mixing in layered stratified plane Couette flow quantified in a tracer-based coordinate. J. Fluid Mech., (in press).
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed