Skip to main content Accessibility help
×
Home

The motion of particles in the Hele-Shaw cell

  • C. Pozrikidis (a1)

Abstract

The force and torque on a particle that translates, rotates, or is held stationary in an incident flow within a channel with parallel-sided walls, are considered in the limit of Stokes flow. Assuming that the particle has an axisymmetric shape with axis perpendicular to the channel walls, the problem is formulated in terms of a boundary integral equation that is capable of describing arbitrary three-dimensional Stokes flow in an axisymmetric domain. The method involves: (a) representing the flow in terms of a single-layer potential that is defined over the physical boundaries of the flow as well as other external surfaces, (b) decomposing the polar cylindrical components of the velocity, boundary surface force, and single-layer potential in complex Fourier series, and (c) collecting same-order Fourier coefficients to obtain a system of one-dimensional Fredholm integral equations of the first kind for the coefficients of the surface force over the traces of the natural boundaries of the flow in an azimuthal plane. In the particular case where the polar cylindrical components of the boundary velocity exhibit a first harmonic dependence on the azimuthal angle, we obtain a reduced system of three real integral equations. A numerical method of solution that is based on a standard boundary element-collocation procedure is developed and tested. For channel flow, the effect of domain truncation on the nature of the far flow is investigated with reference to plane Hagen–Poiseuille flow past a cylindrical post. Numerical results are presented for the force and torque exerted on a family of oblate spheroids located above a single plane wall or within a parallel-sided channel. The effect of particle shape on the structure of the flow is illustrated, and some novel features of the motion are discussed. The numerical computations reveal the range of accuracy of previous asymptotic solutions for small or tightly fitting spherical particles.

Copyright

References

Hide All
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops, and Particles. Academic.
De Mestre, L. J. 1973 Low-Reynolds-number fall of slender cylinders near boundaries. J. Fluid Mech. 58, 641.
Dvinski, A. S. & Popel, A. S. 1987a Motion of a rigid cylinder between parallel plates in Stokes flow. Part 1: Motion in a quiescent fluid and sedimentation. Comput. Fluids 15, 391404.
Dvinski, A. S. & Popel, A. S. 1987b Motion of a rigid cylinder between parallel plates in Stokes flow. Part 2: Poiseuille and Couette flow. Comput. Fluids 15, 405419.
Fung, Y. C. 1984 Biodynamics, Circulation. Springer.
Ganatos, P., Weinbaum, S. & Pfeffer, R. 1980a A strong interaction theory for the creeping motion of a sphere between parallel boundaries. Part 1. Perpendicular motion. J. Fluid Mech. 99, 739753.
Ganatos, P., Pfeffer, R. & Weinbaum, S. 1980b A strong interaction theory for the creeping motion of a sphere between parallel boundaries. Part 2. Parallel motion. J. Fluid Mech. 99, 755783.
Ganatos, P., Weinbaum, S. & Pfeffer, R. 1982 Gravitational and zero-drag motion of a sphere of arbitrary size in an inclined channel at low Reynolds number. J. Fluid Mech. 124, 2743.
Goldman, A. J., Cox, R. G. & Brenner, H. 1967a Slow viscous motion of a sphere parallel to a plane wall - I. Motion through a quiescent fluid. Chem. Engng Sci. 22, 637651.
Goldman, A. J., Cox, R. G. & Brenner, H. 1967b Slow viscous motion of a sphere parallel to a plane wall - II. Couette flow. Chem. Engng Sci. 22, 653660.
Halpern, D. & Secomb, T. W. 1991 Viscous motion of disk-shaped particles through parallel-sided channels with near-minimal widths. J. Fluid Mech. 231, 545560.
Halpern, D. & Secomb, T. W. 1992 The squeezing of red blood cells through parallel-sided channels with near-minimal widths. J. Fluid Mech. 244, 307322.
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.
Hsu, R. & Ganatos, P. 1989 The motion of a rigid body in viscous fluid bounded by a plane wall. J. Fluid Mech. 207, 2972.
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics, Principles and Selected Applications. Butterworth-Heinemann.
Kucaba-Pietal, A. 1986 Nonaxisymmetric Stokes flow past a torus in the presence of a wall. Arch. Mech. 38, 647663.
Lee, J. S. & Fung, Y. C. 1969 Stokes flow around a circular cylindrical post confined between two parallel plates. J. Fluid Mech. 37, 657670.
Lee, J. S. & Fung, Y. C. 1969 Stokes flow around a circular cylindrical post confined between two parallel plates. J. Fluid Mech. 37, 657670.
O'Neill, M. E. & Stewartson, K. 1967 On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech. 27, 705724.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Pozrikidis, C. 1994 Shear flow over a plane wall with an axisymmetric cavity or a circular orifice of finite thickness. Phys. Fluids A, 6, 112.
Vrahopoulou, E. P. 1992 Flow distortions around particles between parallel walls with application to streak formation in slide-coating methods. Chem. Engng Sci. 47, 10271037.
Wakiya, S. 1959 Effect of a submerged object on a slow viscous flow V. Spheroid at an arbitrary angle of attach. Res. Rep. Fac. Engng Niigata Univ. Japan 8, 1730 (in Japanese).
Zhou, H. & Pozrikidis, C. 1993 The flow of suspensions in channels: Single files of drops. Phys. Fluids A 5, 311324.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

The motion of particles in the Hele-Shaw cell

  • C. Pozrikidis (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed