Skip to main content Accessibility help

Morphological evolution of microscopic dewetting droplets with slip

  • Tak Shing Chan (a1), Joshua D. McGraw (a2), Thomas Salez (a3) (a4), Ralf Seemann (a1) and Martin Brinkmann (a1)...


We investigate the dewetting of a droplet on a smooth horizontal solid surface for different slip lengths and equilibrium contact angles. Specifically, we solve for the axisymmetric Stokes flow using the boundary element method with (i) the Navier-slip boundary condition at the solid/liquid boundary and (ii) a time-independent equilibrium contact angle at the contact line. When decreasing the rescaled slip length $\tilde{b}$ with respect to the initial central height of the droplet, the typical non-sphericity of a droplet first increases, reaches a maximum at a characteristic rescaled slip length $\tilde{b}_{m}\approx O(0.1{-}1)$ and then decreases. Regarding different equilibrium contact angles, two universal rescalings are proposed to describe the behaviour of the non-sphericity for rescaled slip lengths larger or smaller than $\tilde{b}_{m}$ . Around $\tilde{b}_{m}$ , the early time evolution of the profiles at the rim can be described by similarity solutions. The results are explained in terms of the structure of the flow field governed by different dissipation channels: elongational flows for $\tilde{b}\gg \tilde{b}_{m}$ , friction at the substrate for $\tilde{b}\approx \tilde{b}_{m}$ and shear flows for $\tilde{b}\ll \tilde{b}_{m}$ . Following the changes between these dominant dissipation mechanisms, our study indicates a crossover to the quasistatic regime when $\tilde{b}$ is many orders of magnitude smaller than  $\tilde{b}_{m}$ .


Corresponding author

Email address for correspondence:


Hide All
Bäumchen, O., Fetzer, R. & Jacobs, K. 2009 Reduced interfacial entanglement density affects the boundary conditions of polymer flow. Phys. Rev. Lett. 103, 247801.
Bocquet, L. & Charlaix, E. 2009 Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 10731095.
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739.
Chen, J.-D. 1988 Experiments on a spreading drop and its contact angle on a solid. J. Colloid Interface Sci. 122, 6072.
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.
Cuenca, A. & Bodiguel, H. 2013 Submicron flow of polymer solutions: slippage reduction due to confinement. Phys. Rev. Lett. 110, 108304.
Edwards, A. M. J., Ledesma-Aguilar, R., Newton, M. I., Brown, C. V. & McHale, G. 2016 Not spreading in reverse: the dewetting of a liquid film into a single drop. Sci. Adv. 2 (September), 111.
Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. 2010 Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10 (10), 40674073.
Fetzer, R., Jacobs, K., Münch, A., Wagner, B. & Witelski, T. P. 2005 New slip regimes and the shape of dewtting thin liquid films. Phys. Rev. Lett. 95, 127801.
Fetzer, R., Münch, A., Wagner, B., Rauscher, M. & Jacobs, K. 2007 Quantifying hydrodynamic slip: a comprehensive analysis of dewetting profiles. Langmuir 23, 1055910566.
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827.
de Gennes, P.-G., Brochart-Wyart, F. & Quéré, D. 2003 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer.
Guido, S. & Villone, M. 1999 Measurement of interfacial tension by drop retraction analysis. J. Colloid Interface Sci. 209, 247250.
Guo, S., Gao, M., Xiong, X.-M., Wang, Y.-J., Wang, X.-P., Sheng, P. & Tong, P. 2013 Direct measurement of friction of a fluctuating contact line. Phys. Rev. Lett. 111, 026101.
Haefner, S., Benzaquen, M., Bäumchen, O., Salez, T., Peters, R., McGraw, J. D., Jacobs, K., Raphaël, E. & Dalnoki-Veress, K. 2015 Influence of slip on the Plateau–Rayleigh instability on a fibre. Nat. Commun. 6 (May), 7409.
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.
Lauga, E., Brenner, M. P. & Stone, H. A. 2007 Microfluidics: the no-slip boundary condition. In Springer Handbook of Experimental Fluid Mechnaics (ed. Tropea, C., Foss, J. F. & Yarin, A.), pp. 12191240. Springer.
Lee, S. H. & Leal, L. G. 1982 The motion of a sphere in the presence of a deformable interface. II. A numerical study of the translation of a sphere normal to an interface. J. Colloid Interface Sci. 87 (1), 81106.
Leger, L. 2003 Friction mechanisms and interfacial slip at fluid–solid interfaces. J. Phys.: Condens. Matter 15, S19.
van Lengerich, H. B. & Steen, P. H. 2012 Energy dissipation and the contact-line region of a spreading bridge. J. Fluid Mech. 703, 111141.
McGraw, J. D., Chan, T. S., Maurer, S., Salez, T., Benzaquen, M., Raphaël, E., Brinkmann, M. & Jacobs, K. 2016 Slip-mediated dewetting of polymer microdroplets. Proc. Natl Acad. Sci. USA 113 (5), 11681173.
Neto, C., Evans, D. R., Bonaccurso, E., Butt, H.-J. & Craig, V. S. J. 2005 Boundary slip in newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Flow. Cambridge University Press.
Redon, C., Brochard-Wyart, F. & Rondelez, F. 1991 Dynamics of dewetting. Phys. Rev. Lett. 66, 715718.
Reiter, G. & Sharma, A. 2001 Auto-optimization of dewetting rates by rim instabilities in slipping polymer films. Phys. Rev. Lett. 87 (16), 166103.
Rivetti, M., Salez, T., Benzaquen, M., Raphaël, E. & Bäumchen, O. 2015 Universal contact-line dynamics at the nanoscale. Soft Matt. 11 (48), 92479253.
Sahimi, M. 1993 Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65, 1393.
Setu, S. A., Dullens, R. P. a., Hernández-Machado, A., Pagonabarraga, I., Aarts, D. G. a. L. & Ledesma-Aguilar, R. 2015 Superconfinement tailors fluid flow at microscales. Nat. Commun. 6, 7297.
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269.
Snoeijer, J. H. & Eggers, J. 2010 Asymptotics of the dewetting rim. Phys. Rev. E 82, 056314.
Sui, Y., Ding, H. & Spelt, P. D. M. 2014 Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46, 97119.
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 14731478.
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501.
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721; (English translation).
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.
Winkels, K. G., Peters, I. R., Evangelista, F., Riepen, M., Daerr, A., Limat, L. & Snoeijer, J. H. 2011 Receding contact lines: from sliding drops to immersion lithography. Eur. Phys. J. Special Topics 192, 195.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed