Skip to main content Accessibility help
×
Home

Molecular gas dynamics analysis on condensation coefficient of vapour during gas–vapour bubble collapse

  • Kazumichi Kobayashi (a1), Takahiro Nagayama (a1), Masao Watanabe (a1), Hiroyuki Fujii (a1) and Misaki Kon (a1)...

Abstract

This study investigates the influence of the condensation coefficient of vapour on the collapse of a bubble composed of condensable gas (vapour) and non-condensable gas (NC gas). We simulated vapour and NC gas flow inside a bubble based on the molecular gas dynamics analysis in order to replicate the phase change (viz., evaporation and condensation) precisely, by changing the initial number density ratio of the NC gas and vapour, the initial bubble radius and the value of the condensation coefficient. The results show that the motion of the bubble is unaffected by the value of the condensation coefficient when that value is larger than approximately 0.4. We also discuss NC gas drift at the bubble wall during the final stage of the bubble collapse and its influence on the condensation coefficient. We conclude that vapour molecules can behave as NC gas molecules when the bubble collapses, owing to the large concentration of NC gas molecules at the gas–liquid interface. That is, the condensation coefficient reaches almost zero when the bubble collapses violently.

Copyright

Corresponding author

Email address for correspondence: kobakazu@eng.hokudai.ac.jp

References

Hide All
Akhatov, I., Lindau, O., Topolnikov, A., Mettin, R., Vakhitova, N. & Lauterborn, W. 2001 Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids 13 (10), 28052819.
Andries, P., Aoki, K. & Perthame, B. 2002 A consistent bgk-type model for gas mixtures. J. Stat. Phys. 106 (5), 9931018.
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press.
Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Cambridge University Press.
Cercignani, C. 2000 Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations, vol. 21. Cambridge University Press.
Chahine, G. L., Kapahi, A. & Hsiao, C.-T. 2016 Coupling bubble and material dynamics to model cavitation peening and pitting. J. Fluid Sci. Technol. 11 (4), JFST0023.
Frezzotti, A. 2011 Boundary conditions at the vapor-liquid interface. Phys. Fluids 23 (3), 030609.
Frezzotti, A. & Barbante, P. 2017 Kinetic theory aspects of non-equilibrium liquid-vapor flows. Mech. Engng Rev. 4 (2), 16-00540.
Fujikawa, S. & Akamatsu, T. 1980 Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 97 (03), 481512.
Fujikawa, S., Yano, T. & Watanabe, M. 2011 Vapor-Liquid Interfaces, Bubbles and Droplets: Fundamentals and Applications. Springer Science & Business Media.
Fuster, D., Hauke, G. & Dopazo, C. 2010 Influence of the accommodation coefficient on nonlinear bubble oscillations. J. Acoust. Soc. Am. 128 (1), 510.
Gumerov, N. A 2000 Dynamics of vapor bubbles with nonequilibrium phase transitions in isotropic acoustic fields. Phys. Fluids 12 (1), 7188.
Hao, Y., Zhang, Y. & Prosperetti, A. 2017 Mechanics of gas-vapor bubbles. Phys. Rev. Fluids 2, 034303.
Hilgenfeldt, S., Lohse, D. & Moss, W. C. 1998 Water temperature dependence of single bubble sonoluminescence. Phys. Rev. Lett. 80, 13321335.
Kawashima, H. & Kameda, M. 2008 Dynamics of a spherical vapor/gas bubble in varying pressure fields. J. Fluid Sci. Technol. 3 (8), 943955.
Kobayashi, K., Hori, K., Kon, M., Sasaki, K. & Watanabe, M. 2016 Molecular dynamics study on evaporation and reflection of monatomic molecules to construct kinetic boundary condition in vapor–liquid equilibria. Heat Mass Transfer 52 (9), 18511859.
Kobayashi, K., Sasaki, K., Kon, M., Fujii, H. & Watanabe, M. 2017 Kinetic boundary conditions for vapor–gas binary mixture. Microfluid Nanofluid 21 (3), 53, 1–13.
Kon, M., Kobayashi, K. & Watanabe, M. 2014 Method of determining kinetic boundary conditions in net evaporation/condensation. Phys. Fluids 26 (7), 072003.
Kon, M., Kobayashi, K. & Watanabe, M. 2016 Liquid temperature dependence of kinetic boundary condition at vapor–liquid interface. Intl J. Heat Mass Transfer 99, 317326.
Kon, M., Kobayashi, K. & Watanabe, M. 2017 Kinetic boundary condition in vapor-iquid two-phase system during unsteady net evaporation/condensation. Eur. J. Mech. (B/Fluids) 64, 8192; special Issue on Non-equilibrium Gas Flows.
Kreider, W., Crum, L. A., Bailey, M. R. & Sapozhnikov, O. A. 2011 A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound. J. Acoust. Soc. Am. 130 (5), 35113530.
Kryukov, A. P. & Levashov, V. Y. 2016 Boundary conditions on the vapor liquid interface at strong condensation. Heat Mass Transfer 52 (7), 13931401.
Lauer, E., Hu, X. Y., Hickel, S. & Andreas, N. A. 2012 Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Comput. Fluids 69, 119.
Magaletti, F., Marino, L. & Casciola, C. M. 2015 Shock wave formation in the collapse of a vapor nanobubble. Phys. Rev. Lett. 114 (6), 064501.
Matsumoto, Y. & Takemura, F. 1994 Influence of internal phenomena on gas bubble motion: effects of thermal diffusion, phase change on the gas-liquid interface and mass diffusion between vapor and noncondensable gas in the collapsing phase. JSME Intl J. B 37 (2), 288296.
Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9 (1), 145185.
Prosperetti, A. 2017 Vapor bubbles. Annu. Rev. Fluid Mech. 49 (1), 221248.
Rayleigh, L. 1917 VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34 (200), 9498.
Sone, Y. 2007 Molecular Gas Dynamics: Theory, Techniques, and Applications. Springer Science & Business Media.
Taguchi, S., Aoki, K. & Takata, S. 2004 Vapor flows condensing at incidence onto a plane condensed phase in the presence of a noncondensable gas. II. Supersonic condensation. Phys. Fluids 16 (1), 7992.
Yasui, K. 2001 Effect of liquid temperature on sonoluminescence. Phys. Rev. E 64, 016310.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Molecular gas dynamics analysis on condensation coefficient of vapour during gas–vapour bubble collapse

  • Kazumichi Kobayashi (a1), Takahiro Nagayama (a1), Masao Watanabe (a1), Hiroyuki Fujii (a1) and Misaki Kon (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed