Skip to main content Accessibility help
×
Home

Modelling for robust feedback control of fluid flows

  • Bryn Ll. Jones (a1), P. H. Heins (a1), E. C. Kerrigan (a2) (a3), J. F. Morrison (a3) and A. S. Sharma (a4)...

Abstract

This paper addresses the problem of designing low-order and linear robust feedback controllers that provide a priori guarantees with respect to stability and performance when applied to a fluid flow. This is challenging, since whilst many flows are governed by a set of nonlinear, partial differential–algebraic equations (the Navier–Stokes equations), the majority of established control system design assumes models of much greater simplicity, in that they are: firstly, linear; secondly, described by ordinary differential equations (ODEs); and thirdly, finite-dimensional. With this in mind, we present a set of techniques that enables the disparity between such models and the underlying flow system to be quantified in a fashion that informs the subsequent design of feedback flow controllers, specifically those based on the $\mathscr{H}_{\infty }$ loop-shaping approach. Highlights include the application of a model refinement technique as a means of obtaining low-order models with an associated bound that quantifies the closed-loop degradation incurred by using such finite-dimensional approximations of the underlying flow. In addition, we demonstrate how the influence of the nonlinearity of the flow can be attenuated by a linear feedback controller that employs high loop gain over a select frequency range, and offer an explanation for this in terms of Landahl’s theory of sheared turbulence. To illustrate the application of these techniques, an $\mathscr{H}_{\infty }$ loop-shaping controller is designed and applied to the problem of reducing perturbation wall shear stress in plane channel flow. Direct numerical simulation (DNS) results demonstrate robust attenuation of the perturbation shear stresses across a wide range of Reynolds numbers with a single linear controller.

Copyright

Corresponding author

Email address for correspondence: b.l.jones@sheffield.ac.uk

References

Hide All
Aamo, O. M. & Krstic, M. 2003 Flow Control by Feedback: Stabilization and Mixing. Springer.
Antoulas, A. C. 2005 An overview of approximation methods for large scale dynamical systems. Annu. Rev. Control 29, 181190.
Arthur, G. G., McKeon, B. J., Dearing, S. S., Morrison, J. F. & Cui, Z. 2006 Manufacture of micro-sensors and actuators for flow control. Microelectron. Engng 83, 12051208.
Åström, K. J. & Murray, R. M. 2008 Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press.
Balas, M. J. 1978 Feedback control of flexible systems. IEEE Trans. Autom. Control 23, 673679.
Baramov, L., Tutty, O. R. & Rogers, E. 2004 $H_{\infty }$ control of nonperiodic two-dimensional channel flow. IEEE Trans. Control Syst. Technol. 12, 111122.
Batchelor, G. K. & Townsend, A. A. 1956 Turbulent diffusion. In Surveys in Mechanics (ed. Batchelor, G. K. & Davies, R. M.), pp. 352399. Cambridge University Press.
Bewley, T. R. 2001 Flow control: new challenges for a new renaissance. Prog. Aerosp. Sci. 37, 2158.
Bewley, T. R. & Liu, S. 1998 Optimal and robust control and estimation of linear paths to transition. J. Fluid Mech. 365, 305349.
Bobba, K. M.2004 Robust flow stability: theory, computations and experiments in near wall turbulence. PhD thesis, California Institute of Technology, Pasadena, CA, USA.
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods, 2nd edn. Dover.
Bradshaw, P. 1967 ‘Inactive’ motion and pressure fluctuations in turbulent boundary layers. J. Fluid Mech. 30, 241258.
Bushnell, D. M. 2003 Aircraft drag reduction: a review. J. Aerosp. Engng 217, 118.
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.
Chernyshenko, S. I. & Baig, M. F. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 544, 99131.
Cherubini, S., De Palma, P., Robinet, J.-C. & Bottaro, A. 2010 Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow. Phys. Rev. E 82 (6), 066302.
Cherubini, S., De Palma, P., Robinet, J.-C. & Bottaro, A. 2011 The minimal seed of turbulent transition in the boundary layer. J. Fluid Mech. 689, 221253.
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.
Chu, Y., Glover, K. & Dowling, A. P. 2003 Control of combustion oscillations via $\mathscr{H}_{\infty }$ loop-shaping, ${\it\mu}$ -analysis and Integral Quadratic Constraints. Automatica 39, 219231.
Collis, S. S., Joslin, R. D., Seifert, A. & Theofilis, V. 2004 Issues in active flow control: theory, control, simulation and experiment. Prog. Aerosp. Sci. 40, 237289.
Corbett, J. J. & Koehler, H. W. 2003 Updated emissions from ocean shipping. J. Geophys. Res. 108 (D20), 46504664.
Couchman, I. J. & Kerrigan, E. C. 2010 Control of mixing in a Stokes’ fluid flow. J. Process Control 20, 11031115.
Curtain, R. & Morris, K. 2009 Transfer functions of distributed parameter systems: a tutorial. Automatica 45, 11011116.
Dahan, J. A., Morgans, A. S. & Lardeau, S. 2012 Feedback control for form-drag reduction on a bluff body with a blunt trailing edge. J. Fluid Mech. 704, 360387.
Dai, L. 1989 Singular Control Systems. Springer.
Dullerud, G. & Paganini, F. 2000 A Course in Robust Control Theory: A Convex Approach. Springer.
Dunn, D. C. & Morrison, J. F. 2003 Anisotropy and energy flux in wall turbulence. J. Fluid Mech. 491, 353378.
Farrell, B. & Ioannou, J. 1993 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids 5 (11), 26002609.
Farrell, B. & Ioannou, J. 1996 Turbulence suppression by active control. Phys. Fluids 8 (5), 12571268.
Ferziger, J. H. & Perić, M. 1997 Computational Methods for Fluid Dynamics. Springer.
Fish, F. E. & Lauder, G. V. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38, 193224.
Frederick, M., Kerrigan, E. C. & Graham, J. M. R. 2010 Gust alleviation using rapidly deployed trailing-edge flaps. J. Wind Engng Ind. Aerodyn. 98 (12), 712723.
Gad-el-Hak, M. 2000 Flow Control: Passive, Active and Reactive Flow Management. Cambridge University Press.
Gallas, Q., Carroll, B., Cattafesta, L., Holman, R., Nishida, T. & Sheplak, M. 2003 Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA J. 41, 240247.
Gerdin, M.2006 Identification and estimation for models described by differential-algebraic equations. PhD thesis, Linköping University, Sweden.
Gibson, J. F.2012 Channelflow: a spectral Navier–Stokes simulator in C++. Tech. Rep., University of New Hampshire.
Glad, T. & Ljung, L. 2000 Control Theory: Multivariable and Nonlinear Methods. Taylor & Francis.
Golub, G. H. & Van Loan, C. F. 1996 Matrix Computations, 3rd edn. The Johns Hopkins University Press.
Hamilton, J. M., Kim, J. & Waleffe, F. 2006 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.
Hanson, R., Lavoie, P., Naguib, A. M. & Morrison, J. F. 2010 Transient growth instability cancelation by a plasma actuator array. Exp. Fluids 49 (6), 13391348.
Hœpffner, J., Chevalier, M., Bewley, T. R. & Henningson, D. S. 2005 State estimation in wall-bounded flow systems. Part 1. Perturbed laminar flows. J. Fluid Mech. 534, 263294.
Hogberg, M., Bewley, T. R. & Henningson, D. S. 2003 Linear feedback control and estimation of transition in plane channel flow. J. Fluid Mech. 481, 149175.
Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.
Hunt, J. C. R. & Carruthers, D. J. 1990 Rapid distortion theory and some of the ‘problems’ of turbulence. J. Fluid Mech. 212, 497532.
Hyde, R. A., Glover, K. & Shanks, G. T. 1995 VSTOL first flight of an $H$ -infinity control law. Comput. Control Engng J. 6 (1), 1116.
Iwamoto, K.2002 Database of fully developed channel flow. Tech. Rep. ILR-0201, Department of Mechanical Engineering, The University of Tokyo.
Jones, B. L. & Kerrigan, E. C. 2010 When is the discretization of a spatially distributed system good enough for control? Automatica 46 (9), 14621468.
Jones, B. L., Kerrigan, E. C., Morrison, J. F. & Zaki, T. A. 2011 Flow estimation of boundary layers using DNS based wall shear information. Intl J. Control 84, 13101325.
Jovanovic, M. R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.
Kim, J. 2003 Control of turbulent boundary layers. Phys. Fluids 15 (5), 10931105.
Kim, J. & Bewley, T. R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.
Kim, J. & Lim, J. 2000 A linear process in wall-bounded turbulent shear flows. Phys. Fluids 12 (8), 18851888.
Kleiser, L. & Schumann, U. 1980 Treatment of incompressibility and boundary conditions in 3D numerical spectral simulations of plane channel flows. In Proceedings of the Third GAMM-Conference on Numerical Methods in Fluid Mechanics, pp. 165173. Vieweg.
Landahl, M. T. 1967 A wave guide model for turbulent shear flow. J. Fluid Mech. 29, 441459.
Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28 (4), 735756.
Landahl, M. T. 1977 Dynamics of boundary layer turbulence and the mechanism of drag reduction. Phys. Fluids 20 (10), S55S63.
Lee, K. H., Cortelezzi, L., Kim, J. & Speyer, J. 2001 Application of reduced-order controller to turbulent flows for drag reduction. Phys. Fluids 13 (5), 13211330.
Lee, M. J., Kim, J. & Moin, P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561583.
Lim, J.2003 Control of wall-bounded turbulent shear flows using modern control theory. PhD thesis, University of California, Los Angeles.
Lu, Q., Bowyer, R. & Jones, B. L. 2014 Analysis and design of Coleman transform-based individual pitch controllers for wind-turbine load reduction. Wind Energy doi:10.1002/we.1769.
Luaga, E. & Bewley, T. R. 2004 Performance of a linear robust control strategy on a nonlinear model of spatially developing flows. J. Fluid Mech. 512, 343374.
McFarlane, D. & Glover, K. 1992 A loop shaping design procedure using $\mathscr{H}_{\infty }$ synthesis. IEEE Trans. Autom. Control 37 (6), 759769.
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.
McKeon, B. J., Sharma, A. S. & Jacobi, I. 2013 Experimental manipulation of wall turbulence: a systems approach. Phys. Fluids 25 (3), 031301.
McKernan, J.2006 Control of plane Poiseuille flow: a theoretical and computational investigation. PhD thesis, Cranfield University.
McKernan, J., Papadakis, G. & Whidborne, J. F. 2006 Linear state-space representation of plane Poiseuille flow for control design: a tutorial. Intl J. Model. Identif. Control 1 (4), 272280.
Morrison, J. F. 2007 The interaction between inner and outer regions of turbulent wall-bounded flow. Phil. Trans. R. Soc. A 365 (1852), 683698.
Moser, R., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to $Re_{{\it\tau}}=590$ . Phys. Fluids 11 (4), 943945.
Pringle, C. C. T. & Kerswell, R. R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105 (15), 154502.
Pringle, C. C. T., Willis, A. P. & Kerswell, R. R. 2012 Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech. 702, 415443.
Reinschke, J. & Smith, M. C. 2003 Designing robustly stabilising controllers for LTI spatially distributed systems using coprime factor synthesis. Automatica 39, 193203.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.
Rowley, C. W. 2005 Model reduction for fluids, using balanced proper orthogonal decomposition. Intl J. Bifurcation Chaos 15 (3), 9971013.
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.
Schmid, P. J. & Henningson, D. S. 2000 Stability and Transition in Shear Flows. Springer.
Schön, T., Gerdin, M., Glad, T. & Gustafsson, F.2003 A modeling and filtering framework for linear implicit systems. In Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 892–897.
Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D. S. 2011 Feedback control of three-dimensional optimal disturbances using reduced-order models. J. Fluid Mech. 677, 63102.
Shahzad, A., Jones, B. L., Kerrigan, E. C. & Constantinides, G. A. 2011 An efficient algorithm for the solution of a coupled Sylvester equation appearing in descriptor systems. Automatica 47, 244248.
Sharma, A. S. & McKeon, B. J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.
Sharma, A. S., Morrison, J. F., McKeon, B. J., Limebeer, D. J. N., Koberg, W. H. & Sherwin, S. J. 2011 Relaminarisation of $Re_{{\it\tau}}=100$ channel flow with globally stabilising linear feedback control. Phys. Fluids 23 (12), 125105.
Skogestad, S. & Postlethwaite, I. 2005 Multivariable Feedback Control. Wiley.
Sturzebecher, D. & Nitsche, W. 2003 Active cancellation of Tollmien–Schlichting instabilities on a wing using multi-channel sensor actuator systems. Intl J. Heat Fluid Flow 24, 572583.
Townsend, A. A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11, 97120.
Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra: The Behaviour of Nonnormal Matrices and Operators. Princeton University Press.
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.
Vinnicombe, G. 2001 Uncertainty and Feedback. Imperial College Press.
Weideman, J. A. C. & Reddy, S. C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.
Willcox, K. & Peraire, J. 2002 Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40 (11), 23232330.
Zhou, K. & Doyle, J. C. 1998 Essentials of Robust Control. Prentice Hall.
Zhou, K., Doyle, J. C. & Glover, K. 1996 Robust and Optimal Control. Prentice Hall.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Modelling for robust feedback control of fluid flows

  • Bryn Ll. Jones (a1), P. H. Heins (a1), E. C. Kerrigan (a2) (a3), J. F. Morrison (a3) and A. S. Sharma (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed