Skip to main content Accessibility help

A model for the oscillatory flow in the cerebral aqueduct

  • S. Sincomb (a1), W. Coenen (a1) (a2), A. L. Sánchez (a1) and J. C. Lasheras (a1) (a3)


This paper addresses the pulsating motion of cerebrospinal fluid in the aqueduct of Sylvius, a slender canal connecting the third and fourth ventricles of the brain. Specific attention is given to the relation between the instantaneous values of the flow rate and the interventricular pressure difference, needed in clinical applications to enable indirect evaluations of the latter from direct magnetic resonance measurements of the former. An order of magnitude analysis accounting for the slenderness of the canal is used in simplifying the flow description. The boundary layer approximation is found to be applicable in the slender canal, where the oscillating flow is characterized by stroke lengths comparable to the canal length and periods comparable to the transverse diffusion time. By way of contrast, the flow in the non-slender opening regions connecting the aqueduct with the two ventricles is found to be inviscid and quasi-steady in the first approximation. The resulting simplified description is validated by comparison with results of direct numerical simulations. The model is used to investigate the relation between the interventricular pressure and the stroke length, in parametric ranges of interest in clinical applications.


Corresponding author

Email address for correspondence:


Hide All
Bardan, G., Plouraboué, F., Zagzoule, M. & Baledent, O. 2012 Simple patient-based transmantle pressure and shear estimate from cine phase-contrast MRI in cerebral aqueduct. IEEE Trans. Biomed. Engng 59 (10), 28742883.
Chen, L., Beckett, A., Verma, A. & Feinberg, D. A. 2015 Dynamics of respiratory and cardiac CSF motion revealed with real-time simultaneous multi-slice EPI velocity phase contrast imaging. Neuroimage 122, 281287.
Dreha-Kulaczewski, S., Joseph, A. A., Merboldt, K.-D., Ludwig, H.-C., Gärtner, J. & Frahm, J. 2015 Inspiration is the major regulator of human CSF flow. J. Neurosci. 35 (6), 24852491.
Eide, P. K. & Sæhle, T. 2010 Is ventriculomegaly in idiopathic normal pressure hydrocephalus associated with a transmantle gradient in pulsatile intracranial pressure? Acta Neurochir. (Wien) 152 (6), 989995.
Feinberg, D. A. & Mark, A. S. 1987 Human brain motion and cerebrospinal fluid circulation demonstrated with mr velocity imaging. Radiology 163 (3), 793799.
Fin, L. & Grebe, R. 2003 Three dimensional modeling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of sylvius. Comput. Methods Biomech. Biomed. Engng 6 (3), 163170.
Friese, S., Hamhaber, U., Erb, M., Kueker, W. & Klose, U. 2004 The influence of pulse and respiration on spinal cerebrospinal fluid pulsation. Invest. Radiol. 39 (2), 120130.
Gupta, S., Soellinger, M., Boesiger, P., Poulikakos, D. & Kurtcuoglu, V. 2009 Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. Trans. ASME J. Biomech. Engng 131 (2), 021010.
Jacobson, E. E., Fletcher, D. F., Morgan, M. K. & Johnston, I. H. 1996 Fluid dynamics of the cerebral aqueduct. Pediatr. Neurosurg. 24 (5), 229236.
Jacobson, E. E., Fletcher, D. F., Morgan, M. K. & Johnston, I. H. 1999 Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis. Med. Biol. Engng Comput. 37 (1), 5963.
Kurtcuoglu, V., Soellinger, M., Summers, P., Boomsma, K., Poulikakos, D., Boesiger, P. & Ventikos, Y. 2007 Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of sylvius. J. Biomech. 40 (6), 12351245.
Lawrence, J. J., Coenen, W., Sánchez, A. L., Pawlak, G., Martínez-Bazán, C., Haughton, V. & Lasheras, J. C. 2019 On the dispersion of a drug delivered intrathecally in the spinal canal. J. Fluid Mech. 861, 679720.
Linninger, A. A., Tangen, K., Hsu, C.-Y. & Frim, D. 2016 Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annu. Rev. Fluid Mech. 48, 219257.
Longatti, P., Fiorindi, A., Peruzzo, P., Basaldella, L. & Susin, F. M. 2019 Form follows function: estimation of CSF flow in the third ventricle–aqueduct–fourth ventricle complex modeled as a diffuser/nozzle pump. J. Neurosurg. 1 (aop), 18.
Markenroth Bloch, K., Töger, J. & Ståhlberg, F. 2018 Investigation of cerebrospinal fluid flow in the cerebral aqueduct using high-resolution phase contrast measurements at 7T MRI. Acta Radiol. 59 (8), 988996.
Penn, R. D., Lee, M. C., Linninger, A. A., Miesel, K., Lu, S. N. & Stylos, L. 2005 Pressure gradients in the brain in an experimental model of hydrocephalus. J. Neurosurg. 102 (6), 10691075.
Ringstad, G., Emblem, K. E., Geier, O., Alperin, N. & Eide, P. K. 2015 Aqueductal stroke volume: comparisons with intracranial pressure scores in idiopathic normal pressure hydrocephalus. Am. J. Neuroradiol. 36 (9), 16231630.
Sánchez, A. L., Martínez-Bazan, C., Gutiérrez-Montes, C., Criado-Hidalgo, E., Pawlak, G., Bradley, W., Haughton, V. & Lasheras, J. C. 2018 On the bulk motion of the cerebrospinal fluid in the spinal canal. J. Fluid Mech. 841, 203227.
Shanks, J., Markenroth Bloch, K., Laurell, K., Cesarini, K. G., Fahlström, M., Larsson, E.-M. & Virhammar, J. 2019 Aqueductal CSF stroke volume is increased in patients with idiopathic normal pressure hydrocephalus and decreases after shunt surgery. Am. J. Neuroradiol. 40 (3), 453459.
Stephensen, H., Tisell, M. & Wikkelsö, C. 2002 There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50 (4), 763773.
Sweetman, B., Xenos, M., Zitella, L. & Linninger, A. A. 2011 Three-dimensional computational prediction of cerebrospinal fluid flow in the human brain. Med. Biol. Engng Comput. 41 (2), 6775.
Takizawa, K., Matsumae, M., Sunohara, S., Yatsushiro, S. & Kuroda, K. 2017 Characterization of cardiac-and respiratory-driven cerebrospinal fluid motion based on asynchronous phase-contrast magnetic resonance imaging in volunteers. Fluids Barriers CNS 14 (1), 25.
Tannehill, J. C., Anderson, D. A. & Pletcher, R. H. 1997 Computational Fluid Mechanics and Heat Transfer, 2nd edn. Taylor and Francis.
Vinje, V., Ringstad, G., Lindstrøm, E. K., Valnes, L. M., Rognes, M. E., Eide, P. K. & Mardal, K.-A. 2019 Respiratory influence on cerebrospinal fluid flow – a computational study based on long-term intracranial pressure measurements. Sci. Rep. 9 (1), 113.
Yamada, S., Miyazaki, M., Yamashita, Y., Ouyang, C., Yui, M., Nakahashi, M., Shimizu, S., Aoki, I., Morohoshi, Y. & McComb, J. G. 2013 Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barries CNS 10 (1), 36.
Yatsushiro, S., Sunohara, S., Atsumi, H., Matsumae, M. & Kuroda, K. 2018 Visualization and characterization of cerebrospinal fluid motion based on magnetic resonance imaging. In Hydrocephalus: Water on the Brain (ed. B. Gürer), p. 9. IntechOpen.
Yildiz, S., Thyagaraj, S., Jin, N., Zhong, X. S., Heidari, P., Martin, B. A., Loth, F., Oshinski, J. & Sabra, K. G. 2017 Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase-contrast MRI. J. Magn. Reson. Imag. 46 (2), 431439.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

A model for the oscillatory flow in the cerebral aqueduct

  • S. Sincomb (a1), W. Coenen (a1) (a2), A. L. Sánchez (a1) and J. C. Lasheras (a1) (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.