Skip to main content Accessibility help

Modal and non-modal stability analysis of electrohydrodynamic flow with and without cross-flow

  • Mengqi Zhang (a1), Fulvio Martinelli (a2), Jian Wu (a1), Peter J. Schmid (a3) and Maurizio Quadrio (a2)...


We report the results of a complete modal and non-modal linear stability analysis of the electrohydrodynamic flow for the problem of electroconvection in the strong-injection region. Convective cells are formed by the Coulomb force in an insulating liquid residing between two plane electrodes subject to unipolar injection. Besides pure electroconvection, we also consider the case where a cross-flow is present, generated by a streamwise pressure gradient, in the form of a laminar Poiseuille flow. The effect of charge diffusion, often neglected in previous linear stability analyses, is included in the present study and a transient growth analysis, rarely considered in electrohydrodynamics, is carried out. In the case without cross-flow, a non-zero charge diffusion leads to a lower linear stability threshold and thus to a more unstable flow. The transient growth, though enhanced by increasing charge diffusion, remains small and hence cannot fully account for the discrepancy of the linear stability threshold between theoretical and experimental results. When a cross-flow is present, increasing the strength of the electric field in the high- $\mathit{Re}$ Poiseuille flow yields a more unstable flow in both modal and non-modal stability analyses. Even though the energy analysis and the input–output analysis both indicate that the energy growth directly related to the electric field is small, the electric effect enhances the lift-up mechanism. The symmetry of channel flow with respect to the centreline is broken due to the additional electric field acting in the wall-normal direction. As a result, the centres of the streamwise rolls are shifted towards the injector electrode, and the optimal spanwise wavenumber achieving maximum transient energy growth increases with the strength of the electric field.


Corresponding author

Email address for correspondence:


Hide All
Alj, A., Denat, A., Gosse, J.-P., Gosse, B. & Nakamura, I. 1985 Creation of charge carriers in nonpolar liquids. IEEE Trans. Elec. Insul. 20 (2), 221231.
Allen, P. & Karayiannis, T. 1995 Electrohydrodynamic enhancement of heat transfer and fluid flows. Heat Recov. Syst. CHP 15 (5), 389423.
Atten, P. 1974 Electrohydrodynamic stability of dielectric liquids during transient regime of space-charge-limited injection. Phys. Fluids 17 (10), 18221827.
Atten, P. 1976 Rôle de la diffusion dans le problème de la stabilité hydrodynamique d’un liquide dièlectrique soumis à une injection unipolaire forte. C. R. Acad. Sci. Paris 283, 2932.
Atten, P. & Honda, T. 1982 The electroviscous effect and its explanation I – The electrohydrodynamic origin; study under unipolar D.C. injection. J. Electrostat. 11 (3), 225245.
Atten, P. & Lacroix, J. C. 1979 Non-linear hydrodynamic stability of liquids subjected to unipolar injection. J. Méc. 18, 469510.
Atten, P. & Moreau, R. 1972 Stabilité electrohydrodynamique des liquides isolants soumis à une injection unipolaire. J. Méc. 11, 471520.
Bart, S. F., Tavrow, L. S., Mehregany, M. & Lang, J. H. 1990 Microfabricated electrohydrodynamic pumps. Sensors Actuators A 21 (1–3), 193197.
Boyd, J. 2001 Chebyshev and Fourier Spectral Methods, 2nd revised edn. Dover.
Bradshaw, P. 1969 The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36, 177191.
Brandt, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids) 47, 8096.
Bushnell, D. M. & McGinley, C. B. 1989 Turbulence control in wall flows. Annu. Rev. Fluid Mech. 21, 120.
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids 4 (8), 16371650.
Butler, K. M. & Farrell, B. F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flows. Phys. Fluids A 5 (3), 774777.
Castellanos, A. 1998 Electrohydrodynamics. Springer.
Castellanos, A. & Agrait, N. 1992 Unipolar injection induced instabilities in plane parallel flows. IEEE Trans. Ind. Applics. 28 (3), 513519.
Chakraborty, S., Liao, I.-C., Adler, A. & Leong, K. W. 2009 Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv. Drug Deliv. Rev. 61 (12), 10431054.
Darabi, J., Rada, M., Ohadi, M. & Lawler, J. 2002 Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump. J. Microelectromech. Syst. 11 (6), 684690.
Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2004 On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271280.
Farrell, B. F. & Ioannou, P. J. 1996 Generalized stability theory. Part I: autonomous operators. J. Atmos. Sci. 53 (14), 20252040.
Félici, N. 1971 DC conduction in liquid dielectrics (Part II): electrohydrodynamic phenomena. Direct Curr. Power Electron. 2, 147165.
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Harten, A. 1983 High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (3), 357393.
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.
Jones, T. 1978 Electrohydrodynamically enhanced heat transfer in liquids – a review. Adv. Heat Transfer 14, 107148.
Jovanović, M. R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.
Kim, J. 2003 Control of turbulent boundary layers. Phys. Fluids 15 (5), 10931105.
Kim, J. & Bewley, T. R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39 (1), 383417.
Kourmatzis, A. & Shrimpton, J. S. 2012 Turbulent three-dimensional dielectric electrohydrodynamic convection between two plates. J. Fluid Mech. 696, 228262.
Lacroix, J. C., Atten, P. & Hopfinger, E. J. 1975 Electro-convection in a dielectric liquid layer subjected to unipolar injection. J. Fluid Mech. 69, 539563.
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.
Lee, J.-G., Cho, H.-J., Huh, N., Ko, C., Lee, W.-C., Jang, Y.-H., Lee, B. S., Kang, I. S. & Choi, J.-W. 2006 Electrohydrodynamic (EHD) dispensing of nanoliter DNA droplets for microarrays. Biosens. Bioelectr. 21 (12), 22402247.
Martinelli, F., Quadrio, M. & Schmid, P. J.2011 Stability of planar shear flow in presence of electroconvection. In Proceedings of the Seventh International Symposium on Turbulence and Shear Flow Phenomena (TSFP-7), July 2011, Ottawa, Canada.
Melcher, J. R. 1981 Continuum Electromechanics. MIT Press.
Ogilvie, G. I. & Proctor, M. R. E. 2003 On the relation between viscoelastic and magnetohydrodynamic flows and their instabilities. J. Fluid Mech. 476, 389409.
Pérez, A. T. & Castellanos, A. 1989 Role of charge diffusion in finite-amplitude electroconvection. Phys. Rev. A 40, 58445855.
Saad, Y. 2011 Numerical Methods for Large Eigenvalue Problems. SIAM.
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.
Schmid, P. J. & Brandt, L. 2014 Analysis of fluid systems: stability, receptivity, sensitivity. Appl. Mech. Rev. 66 (2), 024803.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.
Schneider, J. M. & Watson, P. K. 1970 Electrohydrodynamic stability of space-charge-limited currents in dielectric liquids. I. Theoretical study. Phys. Fluids 13 (8), 19481954.
Schoppa, W. & Hussain, F. 1998 A large-scale control strategy for drag reduction in turbulent boundary layers. Phys. Fluids 10 (5), 10491051.
Soldati, A. & Banerjee, S. 1998 Turbulence modification by large-scale organized electrohydrodynamic flows. Phys. Fluids 10 (7), 17421756.
Traoré, P. H. & Pérez, A. T. 2012 Two-dimensional numerical analysis of electroconvection in a dielectric liquid subjected to strong unipolar injection. Phys. Fluids 24 (3), 037102.
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.
Weideman, J. A. & Reddy, S. C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.
Wu, J., Traoré, P., Vázquez, P. A. & Pérez, A. T. 2013 Onset of convection in a finite two-dimensional container due to unipolar injection of ions. Phys. Rev. E 88, 053018.
Zhang, M., Lashgari, I., Zaki, T. A. & Brandt, L. 2013 Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids. J. Fluid Mech. 737, 249279.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed