Skip to main content Accessibility help

Mixing and entrainment are suppressed in inclined gravity currents

  • Maarten van Reeuwijk (a1), Markus Holzner (a2) and C. P. Caulfield (a3) (a4)


We explore the dynamics of inclined temporal gravity currents using direct numerical simulation, and find that the current creates an environment in which the flux Richardson number $\mathit{Ri}_{f}$ , gradient Richardson number $\mathit{Ri}_{g}$ and turbulent flux coefficient $\unicode[STIX]{x1D6E4}$ are constant across a large portion of the depth. Changing the slope angle $\unicode[STIX]{x1D6FC}$ modifies these mixing parameters, and the flow approaches a maximum Richardson number $\mathit{Ri}_{max}\approx 0.15$ as $\unicode[STIX]{x1D6FC}\rightarrow 0$ at which the entrainment coefficient $E\rightarrow 0$ . The turbulent Prandtl number remains $O(1)$ for all slope angles, demonstrating that $E\rightarrow 0$ is not caused by a switch-off of the turbulent buoyancy flux as conjectured by Ellison (J. Fluid Mech., vol. 2, 1957, pp. 456–466). Instead, $E\rightarrow 0$ occurs as the result of the turbulence intensity going to zero as $\unicode[STIX]{x1D6FC}\rightarrow 0$ , due to the flow requiring larger and larger shear to maintain the same level of turbulence. We develop an approximate model valid for small $\unicode[STIX]{x1D6FC}$ which is able to predict accurately $\mathit{Ri}_{f}$ , $\mathit{Ri}_{g}$ and $\unicode[STIX]{x1D6E4}$ as a function of $\unicode[STIX]{x1D6FC}$ and their maximum attainable values. The model predicts an entrainment law of the form $E=0.31(\mathit{Ri}_{max}-\mathit{Ri})$ , which is in good agreement with the simulation data. The simulations and model presented here contribute to a growing body of evidence that an approach to a marginally or critically stable, relatively weakly stratified equilibrium for stratified shear flows may well be a generic property of turbulent stratified flows.


Corresponding author

Email address for correspondence:


Hide All
Bak, P., Tang, C. & Wiesenfeld, K. 1987 Self-organized criticality – an explanation of 1/f noise. Phys. Rev. Lett. 59, 381384.10.1103/PhysRevLett.59.381
Billant, P. & Chomaz, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13, 16451651.10.1063/1.1369125
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.10.1017/S0022112007006854
Caulfield, C. C. P. & Woods, A. W. 1995 Plumes with nonmonotonic mixing behaviour. Geophys. Astrophys. Fluid Dyn. 79, 173199.10.1080/03091929508228996
Caulfield, C. P. & Woods, A. W. 1998 Turbulent gravitational convection from a point source in a non-uniformly stratified environment. J. Fluid Mech. 360, 229248.10.1017/S0022112098008623
Da Silva, C. B., Hunt, J. C. R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.10.1146/annurev-fluid-010313-141357
Deusebio, E., Caulfield, C. P. & Taylor, J. R. 2015 The intermittency boundary in stratified plane Couette flow. J. Fluid Mech. 781, 298329.10.1017/jfm.2015.497
Ellison, T. H. 1957 Turbulent transport of heat and momentum from an infinite rough plane. J. Fluid Mech. 2, 456466.10.1017/S0022112057000269
Ellison, T. H. & Turner, J. S. 1959 Turbulent entrainment in stratified flows. J. Fluid Mech. 6, 423448.10.1017/S0022112059000738
Falder, M., White, N. J. & Caulfield, C. P. 2016 Seismic imaging of rapid onset of stratified turbulence in the south Atlantic Ocean. J. Phys. Oceanogr. 46 (4), 10231044.10.1175/JPO-D-15-0140.1
Fedorovich, E. & Shapiro, A. 2009 Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys. 57 (4), 9811010.10.2478/s11600-009-0027-4
Ferrari, R., Mashayek, A., McDougall, T. J., Nikurashin, M. & Campin, J. M. 2016 Turning ocean mixing upside down. J. Phys. Oceanogr. 46, 22392261.10.1175/JPO-D-15-0244.1
Ferrari, R. & Wunsch, C. 2009 The distribution of eddy kinetic and potential energies in the global ocean. Annu. Rev. Fluid Mech. 41, 253282.10.1146/annurev.fluid.40.111406.102139
Howard, L. N. 1961 Note on a paper of John W. Miles. J. Fluid Mech. 10 (4), 509512.10.1017/S0022112061000317
Hunt, G. R. & Kaye, N. G. 2001 Virtual origin correction for lazy plumes. J. Fluid Mech. 435, 377396.10.1017/S0022112001003871
Ivey, G. N., Winters, K. B. & Koseff, J. R. 2008 Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech. 40, 169184.10.1146/annurev.fluid.39.050905.110314
Krug, D., Holzner, M., Lüthi, B., Wolf, M., Kinzelbach, W. & Tsinober, A. 2013 Experimental study of entrainment and interface dynamics in a gravity current. Exp. Fluids 54, 1530.10.1007/s00348-013-1530-6
Krug, D., Holzner, M., Lüthi, B., Wolf, M., Kinzelbach, W. & Tsinober, A. 2015 The turbulent/non-turbulent interface in an inclined dense gravity current. J. Fluid Mech. 765, 303324.10.1017/jfm.2014.738
Krug, D., Holzner, M., Marusic, I. & van Reeuwijk, M. 2017 Fractal scaling of the turbulence interface in gravity currents. J. Fluid Mech. 820, R3.10.1017/jfm.2017.245
Lighthill, M. 1950 Contributions to the theory of heat transfer through a laminar boundary layer. Proc. R. Soc. Lond. A 202, 350377.
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.10.1017/S0022112005008128
Linden, P. F. 1979 Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn. 13, 323.10.1080/03091927908243758
Mater, B. D. & Venayagamoorthy, S. K. 2014 A unifying framework for parameterizing stably stratified shear-flow turbulence. Phys. Fluids 26, 036601.10.1063/1.4868142
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10 (4), 496508.10.1017/S0022112061000305
Monin, A. S. & Obukhov, A. M. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 151, 163187.
Morton, B. R. & Middleton, J. 1973 Scale diagrams for forced plumes. J. Fluid Mech. 58, 165176.10.1017/S002211207300220X
Nieuwstadt, F. T. M. 1984 The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 41 (14), 22022216.10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2
Obukhov, A. M. 1971 Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meterol. 2, 729.10.1007/BF00718085
Odier, P., Chen, J. & Ecke, R. E. 2014 Entrainment and mixing in a laboratory model of oceanic overflow. J. Fluid Mech. 746, 498535.10.1017/jfm.2014.104
Odier, P., Chen, J., Rivera, M. K. & Ecke, R. E. 2009 Fluid mixing in stratified gravity currents: The Prandtl mixing length. Phys. Rev. Lett. 102, 134504.10.1103/PhysRevLett.102.134504
Osborn, T. R. 1980 Estimates of the local-rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10, 8389.10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
van Reeuwijk, M., Jonker, H. J. J. & Hanjalić, K. 2008 Wind and boundary layers in Rayleigh–Bénard convection. I. Analysis and modelling. Phys. Rev. E 77, 036311.
van Reeuwijk, M., Krug, D. & Holzner, M. 2018 Small-scale entrainment in inclined gravity currents. Environ. Fluid Mech. 18 (1), 225239.10.1007/s10652-017-9514-3
Salehipour, H. & Peltier, W. R. 2015 Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence. J. Fluid Mech. 775, 464500.10.1017/jfm.2015.305
Salehipour, H., Peltier, W. R. & Caulfield, C. P. 2018 Self-organised criticality of turbulence in strongly stratified mixing layers. J. Fluid Mech. 856, 228256.10.1017/jfm.2018.695
Schlichting, H. & Gersten, K. 2000 Boundary Layer Theory. Springer.10.1007/978-3-642-85829-1
Scotti, A. 2015 Biases in Thorpe-scale estimates of turbulence dissipation. Part II. Energetics arguments and turbulence simulations. J. Geophys. Res. 45, 25222543.
Sher, D. & Woods, A. W. 2015 Gravity currents: entrainment, stratification and self-similarity. J. Fluid Mech. 784, 130162.10.1017/jfm.2015.576
Shih, L. H., Koseff, J. R., Ivey, G. N. & Ferziger, J. H. 2005 Parameterization of turbulent fluxes and scales using homogenous sheared stably stratified turbulence simulations. J. Fluid Mech. 525, 193214.10.1017/S0022112004002587
Simpson, J. E. 1999 Gravity Currents. Cambridge University Press.
Smyth, W. D. & Moum, J. N. 2013 Marginal instability and deep cycle turbulence in the eastern equatorial pacific occean. Geophys. Res. Lett. 40, 61816185.10.1002/2013GL058403
Spalding, D. 1954 Mass transfer in laminar flow. Proc. R. Soc. Lond. A 221, 7899.
Tailleux, R. 2013 Available potential energy and exergy in stratified fluids. Annu. Rev. Fluid Mech. 45, 3558.10.1146/annurev-fluid-011212-140620
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Thorpe, S. A. & Liu, Z. 2009 Marginal instability? J. Phys. Oceanogr. 39 (9), 23732381.10.1175/2009JPO4153.1
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.10.1017/CBO9780511608827
Turner, J. S. 1986 Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 173, 431471.10.1017/S0022112086001222
Verstappen, R. W. C. P. & Veldman, A. E. P. 2003 Symmetry-preserving discretization of turbulent flow. J. Comput. Phys. 187 (1), 343368.10.1016/S0021-9991(03)00126-8
Wahlin, A. K. & Cenedese, C. 2006 How entraining density currents influence the stratification in a one-dimensional ocean basin. Deep Sea Res. II 53, 172193.10.1016/j.dsr2.2005.10.019
Wells, M., Cenedese, C. & Caulfield, C. P. 2010 The relationship between flux coefficient and entrainment ratio in density currents. J. Phys. Oceanogr. 40 (12), 27132727.10.1175/2010JPO4225.1
Wells, M. G. & Wettlaufer, J. S. 2005 Two-dimensional density currents in a confined basin. Geophys. Astrophys. Fluid Mech. 99, 199218.10.1080/03091920500094456
Zhou, Q., Taylor, J. R. & Caulfield, C. P. 2017 Self-similar mixing in stratified plane Couette flow for varying Prandtl number. J. Fluid Mech. 820, 86120.10.1017/jfm.2017.200
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Mixing and entrainment are suppressed in inclined gravity currents

  • Maarten van Reeuwijk (a1), Markus Holzner (a2) and C. P. Caulfield (a3) (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.