Skip to main content Accessibility help
×
Home

Microdroplet nucleation by dissolution of a multicomponent drop in a host liquid

  • Huanshu Tan (a1), Christian Diddens (a1), Ali Akash Mohammed (a1), Junyi Li (a1), Michel Versluis (a1), Xuehua Zhang (a1) (a2) and Detlef Lohse (a1) (a3)...

Abstract

Multicomponent liquid drops in a host liquid are very relevant in various technological applications. Their dissolution or growth dynamics is complex. Differences in solubility between the drop components combined with the solutal Marangoni effect and natural convection contribute to this complexity, which can be even further increased in combination with the ouzo effect, i.e. the spontaneous nucleation of microdroplets due to composition-dependent miscibilities in a ternary system. The quantitative understanding of this combined process is important for applications in industry, particularly for modern liquid–liquid microextraction processes. In this work, as a model system, we experimentally and theoretically explore water–ethanol drops dissolving in anethole oil. During the dissolution, we observed two types of microdroplet nucleation, namely water microdroplet nucleation in the surrounding oil at drop mid-height, and oil microdroplet nucleation in the aqueous drop, again at mid-height. The nucleated oil microdroplets are driven by Marangoni flows inside the aqueous drop and evolve into microdroplet rings. A one-dimensional multiphase and multicomponent diffusion model in combination with thermodynamic equilibrium theory is proposed to predict the behaviour of spontaneous emulsification, i.e. microdroplet nucleation, that is triggered by diffusion. A scale analysis together with experimental investigations of the fluid dynamics of the system reveals that both the solutal Marangoni flow inside the drop and the buoyancy-driven flow in the host liquid influence the diffusion-triggered emulsification process. Our work provides a physical understanding of the microdroplet nucleation by dissolution of a multicomponent drop in a host liquid.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Microdroplet nucleation by dissolution of a multicomponent drop in a host liquid
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Microdroplet nucleation by dissolution of a multicomponent drop in a host liquid
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Microdroplet nucleation by dissolution of a multicomponent drop in a host liquid
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email addresses for correspondence: huanshutan@gmail.com, xuehua.zhang@ualberta.ca, d.lohse@utwente.nl

References

Hide All
Ahuja, S.(Ed.) 2000 Handbook of Bioseparations, vol. 2. Academic.
Barry, S. I. & Caunce, J. 2008 Exact and numerical solutions to a Stefan problem with two moving boundaries. Appl. Math. Model. 32 (1), 8398.
Canny, J. 1986 A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI‐8 (6), 679698.
Chasanis, P., Brass, M. & Kenig, E. Y. 2010 Investigation of multicomponent mass transfer in liquid–liquid extraction systems at microscale. Intl J. Heat Mass Transfer 53 (19), 37583763.
Chu, S. & Prosperetti, A. 2016 Dissolution and growth of a multicomponent drop in an immiscible liquid. J. Fluid Mech. 798, 787811.
Constantinescu, D. & Gmehling, J. 2016 Further development of modified UNIFAC (Dortmund): revision and extension 6. J. Chem. Engng Data 61 (8), 27382748.
Crank, J. 1979 The Mathematics of Diffusion. Oxford University Press.
Crank, J. 1987 Free and Moving Boundary Problems. Oxford University Press.
Dietrich, E., Rump, M. E, Lv, P., Kooij, E. S., Zandvliet, H. J. W. & Lohse, D. 2017 Segregation in dissolving binary-component sessile droplets. J. Fluid Mech. 812, 349369.
Dietrich, E., Wildeman, S., Visser, C. W., Hofhuis, K., Kooij, E. S., Zandvliet, H. J. W. & Lohse, D. 2016 Role of natural convection in the dissolution of sessile droplets. J. Fluid Mech. 794, 4567.
Duncan, P. B. & Needham, D. 2006 Microdroplet dissolution into a second-phase solvent using a micropipet technique: test of the Epstein–Plesset model for an aniline–water system. Langmuir 22 (9), 41904197.
Epstein, P. S. & Plesset, M. S. 1950 On the stability of gas bubbles in liquid–gas solutions. J. Chem. Phys. 18 (11), 15051509.
Fredenslund, A., Gmehling, J. & Rasmussen, P.(Eds) 1977 Vapor–Liquid Equilibria Using UNIFAC. Elsevier.
Fredenslund, A., Jones, R. L. & Prausnitz, J. M. 1975 Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21 (6), 10861099.
Fukumoto, K., Yoshizawa, M. & Ohno, H. 2005 Room temperature ionic liquids from 20 natural amino acids. J. Am. Chem. Soc. 127 (8), 23982399.
Hartley, G. S. 1946 Diffusion and swelling of high polymers. Part I. – The swelling and solution of a high polymer solid considered as a diffusion process. Trans. Faraday Soc. 42, B006B011.
Hayduk, W. & Minhas, B. S. 1982 Correlations for prediction of molecular diffusivities in liquids. Can. J. Chem. Engng 60 (2), 295299.
Izri, Z., van der Linden, M. N., Michelin, S. & Dauchot, O. 2014 Self-propulsion of pure water droplets by spontaneous Marangoni-stress-driven motion. Phys. Rev. Lett. 113, 248302.
Jain, A. & Verma, K. K. 2011 Recent advances in applications of single-drop microextraction: a review. Anal. Chim. Acta 706 (1), 3765.
Kirkaldy, J. S. & Brown, L. C. 1963 Diffusion behaviour in ternary, multiphase systems. Can. Metall. Q. 2 (1), 89115.
Kula, M., Kroner, K. H. & Hustedt, H. 1982 Purification of Enzymes by Liquid–Liquid Extraction, pp. 73118. Springer.
Liu, C., Bonaccurso, E. & Butt, H. 2008 Evaporation of sessile water/ethanol drops in a controlled environment. Phys. Chem. Chem. Phys. 10, 71507157.
Lohse, D. 2016 Towards controlled liquid–liquid microextraction. J. Fluid Mech. 804, 14.
Lohse, D. & Zhang, X. 2015 Surface nanobubble and surface nanodroplets. Rev. Mod. Phys. 87, 9811035.
Lu, Z., Rezk, A., Jativa, F., Yeo, L. & Zhang, X. 2017 Dissolution dynamics of a suspension droplet in a binary solution for controlled nanoparticle assembly. Nanoscale 9 (36), 1344113448.
Maheshwari, S., van der Hoef, M., Prosperetti, A. & Lohse, D. 2017 Molecular dynamics study of multicomponent droplet dissolution in a sparingly miscible liquid. J. Fluid Mech. 833, 5469.
Mathai, V., Calzavarini, E., Brons, J., Sun, C. & Lohse, D. 2016 Microbubbles and microparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett. 117, 024501.
Oliveira, J. L. G., van der Geld, C. W. M. & Kuerten, J. G. M. 2015 Lagrangian velocity and acceleration statistics of fluid and inertial particles measured in pipe flow with 3D particle tracking velocimetry. Intl J. Multiphase Flow 73, 97107.
Pařez, S., Guevara-Carrion, G., Hasse, H. & Vrabec, J. 2013 Mutual diffusion in the ternary mixture of water + methanol + ethanol and its binary subsystems. Phys. Chem. Chem. Phys. 15 (11), 39854001.
Perkins, L. R. & Geankoplis, C. J. 1969 Molecular diffusion in a ternary liquid system with the diffusing component dilute. Chem. Engng Sci. 24 (7), 10351042.
Ruschak, K. J. & Miller, C. A. 1972 Spontaneous emulsification in ternary systems with mass transfer. Ind. Engng Chem. Res. 11 (4), 534540.
Sefiane, K., David, S. & Shanahan, M. 2008 Wetting and evaporation of binary mixture drops. J. Phys. Chem. B 112 (36), 1131711323.
Solans, C., Morales, D. & Homs, M. 2016 Spontaneous emulsification. Curr. Opin. Colloid Interface Sci. 22, 8893.
Su, J. T. & Needham, D. 2013 Mass transfer in the dissolution of a multicomponent liquid droplet in an immiscible liquid environment. Langmuir 29 (44), 1333913345.
Tam, D., von Arnim, V., McKinley, G. H. & Hosoi, A. E. 2009 Marangoni convection in droplets on superhydrophobic surfaces. J. Fluid Mech. 624, 101123.
Tan, H., Diddens, C., Lv, P., Kuerten, J. G. M., Zhang, X. & Lohse, D. 2016 Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating ouzo drop. Proc. Natl Acad. Sci. USA 113 (31), 86428647.
Tan, H., Diddens, C., Versluis, M., Butt, H., Lohse, D. & Zhang, X. 2017 Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface. Soft Matt. 13, 27492759.
Thielicke, W.2014 The flapping flight of birds: analysis and application. PhD thesis, Rijksuniversiteit Groningen.
Thielicke, W. & Stamhuis, E. 2014 PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Source Softw. 2 (1), e30.
Zuend, A., Marcolli, C., Peter, T. & Seinfeld, J. H. 2010 Computation of liquid–liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic–inorganic aerosols. Atmos. Chem. Phys. 10 (16), 77957820.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Tan et al. supplementary movie 1
A dissolving water-ethanol drop in anethole oil

 Video (22.6 MB)
22.6 MB
VIDEO
Movies

Tan et al. supplementary movie 2
Side view recording of diffusion-triggered emulsification

 Video (17.6 MB)
17.6 MB
VIDEO
Movies

Tan et al. supplementary movie 3
Top view recording of diffusion-triggered emulsification

 Video (21.6 MB)
21.6 MB
VIDEO
Movies

Tan et al. supplementary movie 4
Spontaneous emulsification induced by diffusion

 Video (16.6 MB)
16.6 MB
VIDEO
Movies

Tan et al. supplementary movie 5
One-dimensional multicomponent diffusion model

 Video (1.2 MB)
1.2 MB

Microdroplet nucleation by dissolution of a multicomponent drop in a host liquid

  • Huanshu Tan (a1), Christian Diddens (a1), Ali Akash Mohammed (a1), Junyi Li (a1), Michel Versluis (a1), Xuehua Zhang (a1) (a2) and Detlef Lohse (a1) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed