Skip to main content Accessibility help
×
Home

Measured scaling properties of the transition boundaries in a rotating suspension of non-Brownian settling particles

  • W. R. MATSON (a1), B. J. ACKERSON (a1) and P. TONG (a2)

Abstract

Series of concentration and velocity patterns are found for the rotating suspension of non-Brownian settling particles in a completely filled horizontal cylinder. Individual flow states, or phases, are studied using both side and cross-sectional imaging to examine the detailed flow structures. The overall steady-state phase diagram of the system is mapped over a wide range of the rotation rate and fluid viscosity. Effects of the particle radius a, volume fraction φ, and cylinder radius R on the transition boundaries are examined. It is found that the phase diagram of the rotating suspensions can be divided into three regions, in which the transition boundaries obey different scaling laws. A theoretical attempt is made to understand the scaling behaviour of the transition boundaries. The theoretical understanding is achieved at three different levels: a general dimensional consideration, a scaling analysis on the continuum equations of motion, and a specific instability calculation for the transition boundary at the centrifugal limit.

Copyright

References

Hide All
Boote, O. A. M. & Thomas, P. J. 1999 Phys. Fluids 11, 2020.
Breu, A. P. J., Kruelle, C. A. & Rehberg, I. 2003 Europhys. Lett. 62, 491.
Breu, A. P. J., Kruelle, C. A. & Rehberg, I. 2004 Eur. Phys. J. E 13, 189.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability, Chapter X. Dover.
Crowe, C., Sommerfeld, M. & Tsujiet, Y. 1998 Multiphase Flows with Droplets and Particles. CRC, Boca Raton.
Duong, N. P., Husoi, A. E. & Shinbrot, T. 2004 Phys. Rev. Lett. 92, 224502.
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics, 2nd edn. Kluwer.
Lee, J. & Ladd, J. C. 2002 Phys. Rev. Lett. 89, 104301.
Lee, J. & Ladd, J. C. 2005 Phys. Rev. Lett. 95, 048001.
Lipson, S. G. 2001 J. Phys.: Condens. Matter 13, 5001.
Lipson, S. G. & Seiden, G. 2002 Physica A 314, 272.
Matson, W. R. 2004 Doctoral thesis, Oklahoma State University, 2004 (available at http://physics.ust.hk/penger/Matson.pdf).
Matson, W. R., Ackerson, B. J. & Tong, P. 2003 Phys. Rev. E 67, 050301(R).
Matson, W. R., Kalyankar, M., Ackerson, B. J. & Tong, P. 2005 Phys. Rev. E 71, 031401.
Nott, P. R. & Brady, J. F. 1994 J. Fluid Mech. 275, 157.
Raiskinmaki, P., Astrom, J. A., Kataja, M., Latva-Kokko, M., Koponen, A., Jasberg, A., Shakib-Manesh, A. & Timonen, J. 2003 Phys. Rev. E 68, 061403.
Riley, N. 2001 Annu. Rev. Fluid Mech. 33, 43.
Roberts, G. O., Kornfeld, D. M. & Fowlis, W. W. 1991 J. Fluid Mech. 229, 555.
Roco, M. C. 1996 Particulate Two-Phase Flow. Butterworth-Heinemann.
Saffman, P. G. 1976 J. Fluid Mech. 73, 593.
Schaflinger, U. 1996 Flow of Particles in Suspensions. Springer.
Seiden, G., Lipson, S. G. & Franklin, J. 2004 Phys. Rev. E 69, 015301(R).
Seiden, G., Ungarish, M. & Lipson, S. G. 2005 Phys. Rev. E 72, 021407.
Sharp, D. H. 1984 Physica D 12, 3.
Thomas, P. J., Riddell, G. D., Kooner, S. & King, G. P. 2001 Phys. Fluids 13, 2720.
Thoroddsen, S. T. & Mahadevan, L. 1997 Exps. Fluids 23, 1.
Timberlake, B. D. & Morris, J. F. 2002 Phys. Fluids 14, 1580.
Tirumkudulu, M., Mileo, A. & Acrivos, A. 2000 Phys. Fluids 12, 1615.
Tirumkudulu, M., Tripathi, A. & Acrivos, A. 1999 Phys. Fluids 11, 507.
Tritton, D. J. 1988 Physical Fluid Mechanics, 2nd edn., p. 215. Claredon.
Tsao, H. K. & Koch, D. L. 1995 J. Fluid Mech. 296, 211.
Ungarish, M. 1993 Hydrodynamics of Suspensions. Springer.
Voltz, C., Pesch, W. & Rehberg, I. 2001 Phys. Rev. E 65, 011404.
Voth, G. A., Bigger, B., Buckley, M. R., Losert, W., Brenner, M. P., Stone, H. A. & Gollub, J. P. 2002 Phys. Rev. Lett. 88, 234301
Youngs, D. L. 1984 Physica D 12, 32.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.
Type Description Title
PDF
Supplementary materials

Matson supplementary material
Appendix.pdf

 PDF (215 KB)
215 KB

Measured scaling properties of the transition boundaries in a rotating suspension of non-Brownian settling particles

  • W. R. MATSON (a1), B. J. ACKERSON (a1) and P. TONG (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed