Skip to main content Accessibility help

A measure of scale-dependent asymmetry in turbulent boundary layer flows: scaling and Reynolds number similarity

  • Arvind Singh (a1), Kevin B. Howard (a2) and Michele Guala (a2)


The distribution of temporal scale-dependent streamwise velocity increments is investigated in turbulent boundary layer flows at laboratory and atmospheric Reynolds numbers, using the St. Anthony Falls Laboratory wind tunnel and the Surface Layer Turbulence and Environmental Science Test dataset, respectively. The third-order moments of velocity increments, or asymmetry index $A(a,z)$ , is computed for varying wall distance $z$ and time scale separation $a$ , where it was observed to leave a robust, distinct signature in the form of a hump, independent of Reynolds number and located across the inertial range. The hump is observed in wall region limited to $z^{+}<5\times 10^{3}$ , with a tendency to shift towards smaller time scales as the surface is approached ( $z^{+}<70$ ). Comparing the two datasets, the hump, and its location, are found to obey inner wall scaling and is regarded as a genuine feature of the canonical turbulent boundary layer. The magnitude cumulant analysis of the scale-dependent velocity increments further reveals that intermittency is also enhanced near the wall, in the same flow region where the asymmetry signature was observed. The combination of asymmetry and intermittency is inferred to point at non-local energy transfer and scale coupling across a range of scales. From a turbulent structure perspective, such non-local energy transfer can be seen as the result of strong scale-interaction processes between outer scale motions in the logarithmic layer impacting and distorting smaller scales at the wall, through abrupt energy transfer across scales bypassing the typical energy cascade of the inertial range.


Corresponding author

Email address for correspondence:


Hide All
Antonia, R. A., Orlandi, P. & Romano, G. P. 1998 Scaling of longitudinal velocity increments in a fully developed turbulent channel flow. Phys. Fluids 10, 3239.
Basu, S., Foufoula-Georgiou, E., Lashermes, B. & Arnéodo, A. 2007 Estimating intermittency exponent in neutrally stratified atmospheric surface layer flows: a robust framework based on magnitude cumulant and surrogate analyses. Phys. Fluids 19, 115102.
Benzi, R., Ciliberto, S., Tripiccione, C., Baudet, C., Massaioli, F. & Succi, F. 1993 Extended self similarity in turbulent flows. Phys Rev. E 48, R29R32.
Boettcher, F., Renner, C. H., Waldl, H. P. & Peinke, J. 2003 On the statistics of wind gusts. Boundary-Layer Meteorol. 108, 163173.
Carper, M. & Porté-Agel, F. 2008 Subfilter-scale fluxes over a surface roughness transition. Part I: measured fluxes and energy transfer rates. Boundary-Layer Meteorol. 126, 157179.
Chamorro, L. P. & Porté-Agel, F. 2009 A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects. Boundary-Layer Meteorol. 132, 129149.
Chevillard, L., Roux, S. G., Leveque, E., Mordant, N., Pinton, J.-F. & Arneodo, A. 2005 Intermittency of velocity time increments in turbulence. Phys. Rev. Lett. 95, 064501.
De Graaff, D. B. & Eaton, J. K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.
Delour, J., Muzy, J. F. & Arnéodo, A. 2001 Intermittency of 1D velocity spatial profiles in turbulence: a magnitude cumulant analysis. Eur. Phys. J. B 23, 243248.
Frisch, U. 1995 Turbulence, the Legacy of A. N. Kolmogorov. Cambridge University Press.
Guala, M., Hommema, S. E. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.
Guala, M., Metzger, M. & McKeon, B. J. 2010 Intermittency in the atmospheric surface layer: unresolved or slowly varying? Physica D 239 (14), 12511257.
Guala, M., Metzger, M. & McKeon, B. J. 2011 Interactions within the turbulent boundary layer at high Reynolds number. J. Fluid Mech. 666, 573604.
Jimenez, J. 2000 Intermittency and cascades. J. Fluid Mech. 409, 99120.
Howard, K. B., Hu, J. S., Chamorro, L. P. & Guala, M. 2015a Characterizing the response of a wind-turbine model under complex inflow conditions. Wind Energy 18 (4), 729743.
Howard, K. B., Singh, A., Sotiropoulos, F. & Guala, M. 2015b On the statistics of wind turbine wake meandering: an experimental investigation. Phys. Fluids 27 (7), 075103.
Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2013 Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow. J. Fluid Mech. 728, 376395.
Hutchins, N. & Marusic, I. 2007a Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365, 647664.
Hutchins, N. & Marusic, I. 2007b Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Keylock, C. J., Singh, A. & Foufoula-Georgiou, E. 2013 The influence of migrating bed forms on the velocity–intermittency structure of turbulent flow over a gravel bed. Geophys. Res. Lett. 40, 13511355.
Keylock, C. J., Singh, A., Venditti, J. G. & Foufoula-Georgiou, E. 2014 Robust classification for the joint velocity–intermittency structure of turbulent flow over fixed and mobile bedforms. Earth Surf. Process. Landf. 39, 17171728.
Kolmogorov, A. N. 1941 Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. C. R. Acad. Sci. USSR 30, 301305.
Kholmyansky, M., Moriconi, L. & Tsinober, A. 2007 Large scale intermittency in the atmospheric boundary layer. Phys. Rev. E 76, 026307.
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.
Kraichnan, R. H. 1974 On Kolmogorov inertial range theories. J. Fluid Mech. 62 (2), 306330.
Kunkel, G. J. & Marusic, I. 2006 Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J. Fluid Mech. 548, 375402.
Laval, J.-P., Dubrulle, B. & Nazarenko, S. 2001 Nonlocality and intermittency in three-dimensional turbulence. Phys. Fluids 13, 1995.
Liu, L., Hu, F., Cheng, X.-L. & Song, L.-L. 2010 Probability density functions of velocity increments in the atmospheric boundary layer. Boundary-Layer Meteorol. 134, 243255.
Malecot, Y., Auriault, C., Kahalerras, H., Gagne, Y., Chanal, O., Chabaud, B. & Castaing, B. 2000 A statistical estimator of turbulence intermittency in physical and numerical experiments. Eur. Phys. J. B 16, 549561.
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.
Mazellier, N. & Vassilicos, J. C. 2008 The turbulence dissipation constant is not universal because of its universal dependence on large-scale flow topology. Phys. Fluids 20, 015101.
Menevau, C. & Sreenivasan, K. R. 1991 The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 224, 429484.
Metzger, M. M. & Klewicki, J. C. 2001 A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys. Fluids 13, 692701.
Metzger, M., McKeon, B. J. & Holmes, H. 2007 The near-neutral atmospheric surface layer: turbulence and non-stationarity. Phil. Trans. R. Soc. Lond. A 365, 859876.
Mininni, P. D., Alexakis, A. & Pouquet, A. 2006 Large-scale flow effects, energy transfer, and self-similarity on turbulence. Phys. Rev. E 74, 016303.
Morrison, J. F. 2007 The interaction between inner and outer regions of turbulent wall-bounded flows. Phil. Trans. R. Soc. Lond. A 365, 683698.
Onorato, M., Camussi, R. & Iuso, G. 2000 Small scale intermittency and bursting in a turbulent channel flow. Phys. Rev. E 61 (2), 14461454.
Osterlund, J. M.1999 Experimental studies of zero pressure-gradient turbulent boundary-layer flow. PhD thesis, Department of Mechanics, Royal Institute of Technology, Stockholm.
Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.
Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D. & Katul, G. 2004 Interaction between large and small scales in the canopy sublayer. Geophys. Res. Lett. 31 (5), L05102.
Ruiz-Chavarria, G., Ciliberto, S., Baudet, C. & Lévêqueb, E. 2000 Scaling properties of the streamwise component of velocity in a turbulent boundary layer. Physica D 141, 183198.
Schertzer, D., Lovejoy, S., Schmitt, F., Chiguirinskaya, Y. & Marsan, D. 1997 Multifractal cascade dynamics and turbulent intermittency. Fractals 5, 427471.
de Silva, C. M., Marusic, I., Woodcock, J. D. & Meneveau, C. 2015 Scaling of second- and higher-order structure functions in turbulent boundary layers. J. Fluid Mech. 769, 654686.
Singh, A., Fienberg, K., Jerolmack, D. J., Marr, J. & Foufoula-Georgiou, E. 2009 Experimental evidence for statistical scaling and intermittency in sediment transport rates. J. Geophys. Res. 114, F01025.
Singh, A., Foufoula-Georgiou, E., Porté-Agel, F. & Wilcock, P. R. 2012 Coupled dynamics of the co-evolution of bed topography, flow turbulence and sediment transport in an experimental flume. J. Geophys. Res. 117, F04016.
Singh, A., Howard, K. B. & Guala, M. 2014 On the homogenization of turbulent flow structures in the wake of a model wind turbine. Phys. Fluids 26 (2), 025103.
Singh, A., Lanzoni, S., Wilcock, P. R. & Foufoula-Georgiou, E. 2011 Multi-scale statistical characterization of migrating bedforms in gravel and sand bed rivers. Water Resour. Res. 47, W12526.
Singh, A., Porté-Agel, F. & Foufoula-Georgiou, E. 2010 On the influence of gravel bed dynamics on velocity power spectra. Water Resour. Res. 46, W04509.
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.
Toschi, F., Leveque, E. & Ruiz-Chavarria, G. 2000 Shear effects in nonhomogeneous turbulence. Phys. Rev. Lett. 85 (7), 14361439.
Venugopal, V., Roux, S. G., Foufoula-Georgiou, E. & Arnéodo, A. 2006 Revisiting multifractality of high-resolution temporal rainfall using a wavelet-based formalism. Water Resour. Res. 42, W06D14.
Warhaft, Z. 2002 Turbulence in nature and in the laboratory. Proc. Natl Acad. Sci. USA 99 (Suppl. 1), 24812486.
Yeung, P. K., Brasseur, J. G. & Wang, Q. 1995 Dynamics of direct large-small scale couplings in coherently forced turbulence: concurrent physical- and Fourier-space views. J. Fluid Mech. 283, 4395.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

A measure of scale-dependent asymmetry in turbulent boundary layer flows: scaling and Reynolds number similarity

  • Arvind Singh (a1), Kevin B. Howard (a2) and Michele Guala (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed