Skip to main content Accessibility help
×
Home

Mean flow generation by three-dimensional nonlinear internal wave beams

  • F. Beckebanze (a1), K. J. Raja (a2) and L. R. M. Maas (a3)

Abstract

We study the generation of resonantly growing mean flow by weakly nonlinear internal wave beams. With a perturbational expansion, we construct analytic solutions for three-dimensional internal wave beams, exact up to first-order accuracy in the viscosity parameter. We specifically focus on the subtleties of wave beam generation by oscillating boundaries, such as wave makers in laboratory set-ups. The exact solutions to the linearized equations allow us to derive an analytic expression for the mean vertical vorticity production term, which induces a horizontal mean flow. Whereas mean flow generation associated with viscous beam attenuation – known as streaming – has been described before, we are the first to also include a peculiar inviscid mean flow generation in the vicinity of the oscillating wall, resulting from line vortices at the lateral edges of the oscillating boundary. Our theoretical expression for the mean vertical vorticity production is in good agreement with earlier laboratory experiments, for which the previously unrecognized inviscid mean flow generation mechanism turns out to be significant.

Copyright

Corresponding author

Email address for correspondence: f.beckebanze@uu.nl

References

Hide All
Andrews, D. G. & McIntyre, M. E. 1978 On wave-action and its relatives. J. Fluid Mech. 89 (4), 647664.10.1017/S0022112078002785
Bhatia, H., Norgard, G., Pascucci, V. & Bremer, P.-T. 2013 The Helmholtz–Hodge decomposition – a survey. IEEE Trans. Vis. Comput. Graphics 19 (8), 13861404.10.1109/TVCG.2012.316
Binson, J. 1997 Chaotic mixing by internal inertia-gravity waves. Phys. Fluids 9 (8), 945.
Bordes, G., Venaille, A., Joubaud, S., Odier, P. & Dauxois, T. 2012 Experimental observation of a strong mean flow induced by internal gravity waves. Phys. Fluids 24 (4), 086602.10.1063/1.4745880
Bretherton, F. P. 1969 On the mean motion induced by internal gravity waves. J. Fluid Mech. 36 (4), 785803.10.1017/S0022112069001984
Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E. V. & Dauxois, T. 2016 Internal wave attractors examined using laboratory experiments and 3D numerical simulations. J. Fluid Mech. 793, 109131.10.1017/jfm.2016.119
Bühler, O. 2010 Waves and Mean Flows. Cambridge University Press.
Bühler, O., Kuan, M. & Tabak, E. G. 2017 Anisotropic Helmholtz and wave–vortex decomposition of one-dimensional spectra. J. Fluid Mech. 815, 361387.10.1017/jfm.2017.57
Bühler, O. & McIntyre, M. E. 2005 Wave capture and wave–vortex duality. J. Fluid Mech. 534, 6795.10.1017/S0022112005004374
Dauxois, T., Joubaud, S., Odier, P. & Venaille, A. 2018 Instabilities of internal gravity wave beams. Annu. Rev. Fluid Mech. 50, 128.10.1146/annurev-fluid-122316-044539
Fan, B., Kataoka, T. & Akylas, T. R. 2018 On the interaction of an internal wavepacket with its induced mean flow and the role of streaming. J. Fluid Mech. 838, R1.10.1017/jfm.2018.1
Garrett, C. & Kunze, E. 2007 Internal tide generation in deep ocean. Annu. Rev. Fluid Mech. 87, 5787.10.1146/annurev.fluid.39.050905.110227
Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2007 A novel internal waves generator. Exp. Fluids 42 (1), 123130.10.1007/s00348-006-0225-7
Grisouard, N.2010 Réflexions et réfractions non-linéaires d’ondes de gravité internes. PhD thesis, University Grenoble-Alpes.
Grisouard, N. & Bühler, O. 2012 Forcing of oceanic mean flows by dissipating internal tides. J. Fluid Mech. 708, 250278.10.1017/jfm.2012.303
Grisouard, N., Leclair, M., Gostiaux, L. & Staquet, C. 2013 Large scale energy transfer from an internal gravity wave reflecting on a simple slope. Procedia IUTAM 8, 119128.10.1016/j.piutam.2013.04.016
Hoskins, B. 1997 A potential vorticity view of synoptic development. Meteorol. Appl. 4, 325334.10.1017/S1350482797000716
Kataoka, T. & Akylas, T. R. 2015 On three-dimensional internal gravity wave beams and induced large-scale mean flows. J. Fluid Mech. 769, 621634.10.1017/jfm.2015.143
Kataoka, T., Ghaemsaidi, S. J., Holzenberger, N., Peacock, T. & Akylas, T. R. 2017 Tilting at wave beams: a new perspective on the St. Andrew’s Cross. J. Fluid Mech. 830, 660680.10.1017/jfm.2017.615
King, B., Zhang, H. P. & Swinney, H. L. 2010 Tidal flow over three dimensional topography generates out-of-forcing-plane harmonics. Geophys. Res. Lett. 37, 15.10.1029/2010GL043221
Kistovich, Y. V. & Chashechkin, Y. D. 2001 Mass transport and the force of a beam of two-dimensional periodic internal waves. Z. Angew. Math. Mech. J. Appl. Math. Mech. 65 (2), 237242.10.1016/S0021-8928(01)00027-2
Krol, M. S. 1991 On the averaging method in nearly time-periodic advection–diffusion problems. SIAM J. Appl. Maths 51 (6), 16221637.10.1137/0151083
Lamb, K. G. 2014 Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech. 46, 231254.10.1146/annurev-fluid-011212-140701
Lighthill, J. 1978 Acoustic streaming. J. Sound Vib. 61, 391418.10.1016/0022-460X(78)90388-7
Longuet-Higgins, M. S. & Stewart, R. W. 1964 Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Res. 11, 529562.
McEwan, A. C. 1973 Interactions between internal gravity wave and their traumatic effect on a continuous stratification. Boundary-Layer Meteorol. 5, 159175.10.1007/BF02188317
Mercier, M. J., Garnier, N. B. & Dauxois, T. 2008 Reflection and diffraction of internal waves analyzed with the Hilbert transform. Phys. Fluids 20 (8), 086601.10.1063/1.2963136
Mercier, M. J., Martinand, D., Mathur, M., Gostiaux, L., Peacock, T. & Dauxois, T. 2010 New wave generation. J. Fluid Mech. 657, 308334.10.1017/S0022112010002454
Ou, H. W. & Maas, L. 1986 Tidal-induced buoyancy flux and mean transverse circulation. Cont. Shelf Res. 5, 611628.10.1016/0278-4343(86)90096-8
Pillet, G., Ermanyuk, E. V., Maas, L. R. M., Sibgatullin, I. N. & Dauxois, T. 2018 Internal wave attractors in three-dimensional geometries: trapping by oblique reflection. J. Fluid Mech. 203225.10.1017/jfm.2018.236
Raja, K. J.2018 Internal waves and mean flow in the presence of topography. PhD thesis, University Grenoble-Alpes.
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33, 4365.10.1146/annurev.fluid.33.1.43
Schlichting, H. & Gersten, K. 2000 Boundary-Layer Theory. Springer.10.1007/978-3-642-85829-1
Semin, B., Facchini, G., Pétrélis, F. & Fauve, S. 2016 Generation of a mean flow by an internal wave. Phys. Fluids 28 (9), 096601.10.1063/1.4962937
Sibgatullin, I. & Kalugin, M. 2016 High-resolution simulation of internal wave attractors and impact of interaction of high amplitude internal waves with walls on dynamics of wave attractors. In Proc. VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece, 5–10 June 2016. National Technical University of Athens.
Staquet, C. & Riley, J. J. 1989 On the velocity field associated with potential vorticity. Dyn. Atmos. Oceans 14, 93123.10.1016/0377-0265(89)90059-6
Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34, 559593.10.1146/annurev.fluid.34.090601.130953
Sutherland, B. R. 2006 Internal wave instability: Wave–wave versus wave-induced mean flow interactions. Phys. Fluids 18 (7), 074107.10.1063/1.2219102
Sutherland, B. R. 2010 Internal Gravity Waves. Cambridge University Press.10.1017/CBO9780511780318
Tabaei, A. & Akylas, T. R. 2003 Nonlinear internal gravity wave beams. J. Fluid Mech. 482, 141161.10.1017/S0022112003003902
Tabaei, A. & Akylas, T. R. 2007 Resonant long–short wave interactions in an unbounded rotating stratified fluid. Stud. Appl. Maths 119 (3), 271296.10.1111/j.1467-9590.2007.00389.x
Tabaei, A., Akylas, T. R. & Lamb, K. G. 2005 Nonlinear effects in reflecting and colliding internal wave beams. J. Fluid Mech. 526, 217243.10.1017/S0022112004002769
Thomas, N. H. & Stevenson, T. N. 1973 An internal wave in a viscous ocean stratified by both salt and heat. J. Fluid Mech. 61, 301304.10.1017/S0022112073000728
Thorpe, S. A. 1987 On the reflection of a train of finite-amplitude internal waves from a uniform slope. J. Fluid Mech. 178, 279302.10.1017/S0022112087001228
van den Bremer, T. S.2014 The induced mean flow of surface, internal and interfacial gravity wave groups. PhD thesis, University of Oxford.
van den Bremer, T. S. & Sutherland, B. R. 2018 The wave-induced flow of internal gravity wavepackets with arbitrary aspect ratio. J. Fluid Mech. 834, 385408.10.1017/jfm.2017.745
Voisin, B. 2003 Limit states of internal wave beams. J. Fluid Mech. 496, 243293.10.1017/S0022112003006414
Wagner, G. L. & Young, W. R. 2015 Available potential vorticity and wave-averaged quasi-geostrophic flow. J. Fluid Mech. 785, 401424.10.1017/jfm.2015.626
Wunsch, C. 1971 Note on some Reynolds stress effects of internal waves on slopes. Deep-Sea Res. 18, 583591.
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.10.1146/annurev.fluid.36.050802.122121
Zhou, Q. & Diamessis, P. J. 2015 Lagrangian flows within reflecting internal waves at a horizontal free-slip surface. Phys. Fluids 27 (12), 126601.10.1063/1.4936578
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed