Skip to main content Accessibility help
×
Home

The mean conformation tensor in viscoelastic turbulence

  • Ismail Hameduddin (a1) and Tamer A. Zaki (a2)

Abstract

This work demonstrates that the popular arithmetic mean conformation tensor frequently used in the analysis of turbulent viscoelastic flows is not a good representative of the ensemble. Alternative means based on recent developments in the literature are proposed, namely, the geometric and log-Euclidean means. These means are mathematically consistent with the Riemannian structure of the manifold of positive-definite tensors, on which the conformation tensor lives, and have useful properties that make them attractive alternatives to the arithmetic mean. Using a turbulent FENE-P channel flow dataset, it is shown that these two alternatives are physically representative of the ensemble. By definition, these means minimize the geodesic distance to realizations and exactly preserve the scalar geometric mean of the volume and of the principal stretches. The proposed geometric and log-Euclidean means have clear physical interpretations and are attractive quantities for turbulence modelling.

Copyright

Corresponding author

Email address for correspondence: t.zaki@jhu.edu

References

Hide All
Ando, T., Li, C. & Mathias, R. 2004 Geometric means. Linear Algebr. Applics. 385, 305334.10.1016/j.laa.2003.11.019
Arsigny, V., Fillard, P., Pennec, X. & Ayache, N.2005 Fast and simple computations on tensors with log-Euclidean metrics. PhD thesis, INRIA.
Arsigny, V., Fillard, P., Pennec, X. & Ayache, N. 2006 Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56 (2), 411421.10.1002/mrm.20965
Arsigny, V., Fillard, P., Pennec, X. & Ayache, N. 2007 Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Applics. 29 (1), 328347.10.1137/050637996
Bhatia, R. & Karandikar, R. L. 2012 Monotonicity of the matrix geometric mean. Math. Ann. 353 (4), 14531467.10.1007/s00208-011-0721-9
Hameduddin, I., Gayme, D. F. & Zaki, T. A. 2019 Perturbative expansions of the conformation tensor in viscoelastic flows. J. Fluid Mech. 858, 377406.10.1017/jfm.2018.777
Hameduddin, I., Meneveau, C., Zaki, T. A. & Gayme, D. F. 2018 Geometric decomposition of the conformation tensor in viscoelastic turbulence. J. Fluid Mech. 842, 395427.10.1017/jfm.2018.118
Hiai, F. & Petz, D. 2009 Riemannian metrics on positive definite matrices related to means. Linear Algebr. Applics. 430 (11–12), 31053130.10.1016/j.laa.2009.01.025
Housiadas, K. D. & Beris, A. 2003 Polymer-induced drag reduction: effects of the variations in elasticity and inertia in turbulent viscoelastic channel flow. Phys. Fluids 15 (8), 23692384.10.1063/1.1589484
Knechtges, P. 2015 The fully-implicit log-conformation formulation and its application to three-dimensional flows. J. Non-Newtonian Fluid Mech. 223, 209220.10.1016/j.jnnfm.2015.07.004
Lang, S. 2001 Fundamentals of Differential Geometry, Graduate Texts in Mathematics, vol. 191. Springer.
Lee, S. J. & Zaki, T. A. 2017 Simulations of natural transition in viscoelastic channel flow. J. Fluid Mech. 820, 232262.10.1017/jfm.2017.198
Masoudian, M., Kim, K., Pinho, F. T. & Sureshkumar, R. 2013 A viscoelastic k–𝜀–v 2f turbulent flow model valid up to the maximum drag reduction limit. J. Non-Newtonian Fluid Mech. 202, 99111.10.1016/j.jnnfm.2013.09.007
Moakher, M. 2005 A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Applics. 26 (3), 735747.10.1137/S0895479803436937
Nguyen, M. Q., Delache, A., Simoëns, S., Bos, W. J. T. & El Hajem, M. 2016 Small scale dynamics of isotropic viscoelastic turbulence. Phys. Rev. Fluids 1 (8), 083301.10.1103/PhysRevFluids.1.083301
Seo, Y. 2013 Generalized Pólya–Szegö type inequalities for some non-commutative geometric means. Linear Algebr. Applics. 438 (4), 17111726.10.1016/j.laa.2011.10.036
Wang, S., Graham, M. D., Hahn, F. J. & Xi, L. 2014 Time-series and extended Karhunen–Loève analysis of turbulent drag reduction in polymer solutions. AIChE 60 (4), 14601475.10.1002/aic.14328
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed