Skip to main content Accessibility help

Macroscopic model for unsteady flow in porous media

  • Didier Lasseux (a1), Francisco J. Valdés-Parada (a2) and Fabien Bellet (a3)


The present article reports on a formal derivation of a macroscopic model for unsteady one-phase incompressible flow in rigid and periodic porous media using an upscaling technique. The derivation is carried out in the time domain in the general situation where inertia may have a significant impact. The resulting model is non-local in time and involves two effective coefficients in the macroscopic filtration law, namely a dynamic apparent permeability tensor, $\unicode[STIX]{x1D643}_{t}$ , and a vector, $\unicode[STIX]{x1D736}$ , accounting for the time-decaying influence of the flow initial condition. This model generalizes previous non-local macroscale models restricted to creeping flow conditions. Ancillary closure problems are provided, which allow the effective coefficients to be computed. Symmetry and positiveness analyses of $\unicode[STIX]{x1D643}_{t}$ are carried out, showing that this tensor is symmetric only in the creeping regime. The effective coefficients are functions of time, geometry, macroscopic forcings and the initial flow condition. This is illustrated through numerical solutions of the closure problems. Predictions are made on a simple periodic structure for a wide range of Reynolds numbers smaller than the critical value characterizing the first Hopf bifurcation. Finally, the performance of the macroscopic model for a variety of macroscopic forcings and initial conditions is examined in several case studies. Validation through comparisons with direct numerical simulations is performed. It is shown that the purely heuristic classical model, widely used for unsteady flow, consisting of a Darcy-like model complemented with an accumulation term on the filtration velocity, is inappropriate.


Corresponding author

Email address for correspondence:


Hide All
Abderahmane, K., Khalifa, O. A., Wahyudi, I. & Thomas, P. 2002 New extension of Darcy’s law to unsteady flows. Soils Found. 42, 5363.
Achdou, Y. & Avellaneda, M. 1992 Influence of pore roughness and pore-size dispersion in estimating the permeability of a porous medium from electrical measurements. Phys. Fluids 4 (12), 26512673.
Agnaou, M., Lasseux, D. & Ahmadi, A. 2016 From steady to unsteady laminar flow in model porous structures: an investigation of the first Hopf bifurcation. Comput. Fluids 136, 6782.
Allaire, G. 1992 Progress in Partial Differential Equations: Calculus of Variations, Applications. (Homogenization of the Unsteady Stokes Equations in Porous Media) , Longman Scientific and Technical.
Auriault, J. L. 1980 Dynamic behaviour of a porous medium saturated by a Newtonian fluid. Intl J. Engng Sci. 18 (6), 775785.
Auriault, J. L. 1999 Comments on the paper ‘Local and global transitions to chaos and hysteresis in a porous layer heated from below’, by P. Vadasz. Trans. Porous Med. 37, 247249.
Auriault, J. L., Borne, L. & Chambon, R. 1985 Dynamics of porous saturated media, checking of the generalized law of Darcy. J. Acoust. Soc. Am. 77 (5), 16411650.
Auriault, J. L., Boutin, C. & Geindreau, C. 2009 Homogenization of Coupled Phenomena in Heterogenous Media. ISTE.
Balhoff, M., Mikelić, A. & Wheeler, M. F. 2010 Polynomial filtration laws for low Reynolds number flows through porous media. Trans. Porous Med. 81 (1), 3560.
Barrere, J., Gipouloux, O. & Whitaker, S. 1992 On the closure problem for Darcy’s law. Trans. Porous Med. 7 (3), 209222.
Biot, M. A. 1956a Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28 (2), 168178.
Biot, M. A. 1956b Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28 (2), 179191.
Bories, S., Mojtabi, A., Prat, M. & Quintard, M. 2008 Transferts de chaleur dans les milieux poreux – conduction, convection, rayonnement. Tech. l’Ingt. BE 8250, 122.
Bourgeat, A., Marušić-Paloka, E. & Mikelić, A. 1996 Weak nonlinear corrections for Darcy’s law. Math. Models Meth. Appl. Sci. 06 (08), 11431155.
Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.
Burcharth, H. F. & Andersen, O. H. 1995 On the one-dimensional steady and unsteady porous flow equations. Coast. Engng 24, 233257.
Chapman, A. M. & Higdon, J. J. L. 1992 Oscillatory Stokes flow in periodic porous media. Phys. Fluids A 4 (10), 20992116.
Charlaix, E., Kushnick, A. P. & Stokes, J. P. 1988 Experimental study of dynamic permeability in porous media. Phys. Rev. Lett. 61 (14), 15951598.
Cortis, A., Smeulders, D. M. J., Guermond, J. L. & Lafarge, D. 2003 Influence of pore roughness on high-frequency permeability. Phys. Fluids 15 (6), 17661775.
Corvaro, S., Mancinelli, A., Brocchini, M., Seta, E. & Lorenzoni, C. 2010 On the wave damping due to a permeable seabed. Coast. Engng 57, 10291041.
Cushman, J. H., Bennethum, L. S. & Hu, B. X. 2002 A primer on upscaling tools for porous media. Adv. Water Resour. 25 (8–12), 10431067.
Dogru, A. H., Alexander, W. & Panton, R. L. 1978 Numerical solution of unsteady flow problems in porous media by spline functions. J. Hydrol. 38, 179195.
Gray, W. G. 1975 A derivation of the equations for multiphase transport. Chem. Engng Sci. 30, 229233.
Gray, W. G. & Miller, C. T. 2014 Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems. Springer.
Hall, K. R., Smith, G. M. & Turcke, D. J. 1995 Comparison of oscillatory and stationary flow through porous media. Coast. Engng 24, 217232.
Hill, A. A. & Straughan, B. 2008 Poiseuille flow in a fluid overlying a porous medium. J. Fluid Mech. 603, 137149.
Hill, A. A. & Straughan, B. 2009 Poiseuille flow in a fluid overlying a highly porous material. Adv. Water Resour. 32, 16091614.
Howes, F. A. & Whitaker, S. 1985 The spatial averaging theorem revisited. Chem. Engng Sci. 40, 13871392.
Jin, Y. & Kuznetsov, A. V. 2017 Turbulence modeling for flows in wall bounded porous media: an analysis based on direct numerical simulations. Phys. Fluids 29 (4), 045102.
Johnson, D. L. 1989 Scaling function for dynamic permeability in porous media. Phys. Rev. Lett. 63 (5), 580.
Johnson, D. L., Koplik, J. & Dashen, R. 1987 Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379402.
Kuznetsov, A. V. & Nield, D. A. 2006 Forced convection with laminar pulsating flow in a saturated porous channel or tube. Trans. Porous Med. 65, 505523.
Lasseux, D., Abbasian-Arani, A. A. & Ahmadi, A. 2011 On the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous media. Phys. Fluids 23, 073103.
Lasseux, D. & Valdés-Parada, F. J. 2017 Symmetry properties of macroscopic transport coefficients in porous media. Phys. Fluids 29, 043303.
Laushey, L. M. & Popat, L. V. 1968 Darcy’s law during unsteady flow. In Ground Water: General Assembly of Bern (ed. Tison, L. J.), pp. 284299. International Union of Geodesy and Geophysics (IUGG) and International Association of Scientific Hydrology (IASH), Boulder;
Lévy, T. 1979 Propagation of waves in a fluid-saturated porous elastic solid. Intl J. Engng Sci. 17 (9), 10051014.
Lions, J. L. 1981 Some Methods in the Mathematical Analysis of Systems and Their Control. Gordon and Breach.
Lions, P. L. & Masmoudi, N. 2005 Homogenization of the Euler system in a 2D porous medium. J. Math. Pures Appl. 84, 120.
Marušić-Paloka, E. & Mikelić, A. 2000 The derivation of a nonlinear filtration law including the inertia effects via homogenization. Nonlinear Anal. Theory Meth. Applics. 42 (1), 97137.
Masmoudi, N. 1998 The Euler limit of the Navier–Stokes equations, and rotating fluids with boundary. Arch. Rat. Mech. Anal. 142, 375394.
Masmoudi, N. 2002 Homogenization of the compressible Navier–Stokes equations in a porous medium. ESAIM: Control Optim. Calc. Var. 8, 885906.
Mei, C. C. & Vernescu, B. 2010 Homogenization Methods for Multiscale Mechanics. World Scientific.
Mikelić, A. 1994 Mathematical derivation of the Darcy-type law with memory effects, governing transient flow through porous medium. Glas. Mat. 29 (49), 5777.
Nield, D. A. & Bejan, A. 2013 Convection in Porous Media. Springer.
Polubarinova-Kochina, P. Ya. 1962 Theory of Ground Water Movement (Translated from the Russian edition by J. M. Roger de Wiest). Princeton University Press.
Rajagopal, K. R. 2007 On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Meth. Appl. Sci. 17, 215252.
Sahimi, M. 2011 Flow and Transport in Porous Media and Fractured Rock. From Classical Methods to Modern Approaches. Wiley.
Sanchez-Palencia, E. 1980 Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics. Springer.
Sheng, P. & Zhou, M.-Y. 1988 Dynamic permeability in porous media. Phys. Rev. Lett. 61 (14), 15911594.
Slattery, J. C. 1999 Advanced Transport Phenomena. Cambridge University Press.
Smeulders, D. M. J., Eggels, R. L. G. M. & Van Dongen, M. E. H. 1992 Dynamic permeability: reformulation of theory and new experimental and numerical data. J. Fluid Mech. 245, 211227.
Sollitt, C. K. & Cross, R. H. 1972 Wave transmission through permeable breakwaters. In Proceedings of 13th Coastal Engineering Conference, ASCE, vol. 3, pp. 18271846. ASCE.
Teng, H. & Zhao, T. S. 2000 An extension of Darcy’s law to non-Stokes flow in porous media. Chem. Engng Sci. 55, 27372755.
Tilton, N. & Cortelezzi, L. 2008 Linear stability analysis of pressure-driven flows in channels with porous walls. J. Fluid Mech. 604, 411445.
Truesdell, C. & Toupin, R. 1960 The Classical Field Theories. Springer.
Vadasz, P. 1999 Local and global transitions to chaos and hysteresis in a porous layer heated from below. Trans. Porous Med. 37, 213235.
Whitaker, S. 1996 The Forchheimer equation: a theoretical development. Trans. Porous Med. 25, 2761.
Whitaker, S. 1999 The Method of Volume Averaging. Kluwer.
Wood, B. D. & Valdés-Parada, F. J. 2013 Volume averaging: local and nonlocal closures using a Green’s function approach. Adv. Water Resour. 51, 139167.
Zhou, M.-Y. & Sheng, P. 1989 First-principles calculations of dynamic permeability in porous media. Phys. Rev. B 39 (16), 1202712039.
Zhu, T., Waluga, C., Wohlmuth, B. & Manhart, M. 2014 A study of the time constant in unsteady porous media flow using direct numerical simulation. Trans. Porous Med. 104, 161179.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed