Skip to main content Accessibility help
×
Home

Macroscopic and kinetic modelling of rarefied polyatomic gases

  • Behnam Rahimi (a1) and Henning Struchtrup (a1)

Abstract

A kinetic model and corresponding high-order macroscopic model for the accurate description of rarefied polyatomic gas flows are introduced. The different energy exchange processes are accounted for with a two term collision model. The proposed kinetic model, which is an extension of the S-model, predicts correct relaxation of higher moments and delivers the accurate Prandtl ( $Pr$ ) number. Also, the model has a proven linear H-theorem. The order of magnitude method is applied to the primary moment equations to acquire the optimized moment definitions and the final scaled set of Grad’s 36 moment equations for polyatomic gases. At the first order, a modification of the Navier–Stokes–Fourier (NSF) equations is obtained. At third order of accuracy, a set of 19 regularized partial differential equations (R19) is obtained. Furthermore, the terms associated with the internal degrees of freedom yield various intermediate orders of accuracy, a total of 13 different orders. Thereafter, boundary conditions for the proposed macroscopic model are introduced. The unsteady heat conduction of a gas at rest is studied numerically and analytically as an example of a boundary value problem. The results for different gases are given and effects of Knudsen numbers, degrees of freedom, accommodation coefficients and temperature-dependent properties are investigated. For some cases, the higher-order effects are very dominant and the widely used first-order set of the NSF equations fails to accurately capture the gas behaviour and should be replaced by the proposed higher-order set of equations.

Copyright

Corresponding author

Email address for correspondence: behnamr@uvic.ca

References

Hide All
Andries, P., Tallec, P. L., Perlat, J.-P. & Perthame, B. 2000 The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. (B/Fluids) 19 (6), 813830.
Arima, T., Taniguchi, S., Ruggeri, T. & Sugiyama, M. 2012 Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24 (4–6), 271292.
Boltzmann, L. 1872 Weitere studien über das wärmegleichgewicht unter gasmolekülen. Sitz.ber. Akad. Wiss. Wien 66 (2), 275370.
Borgnakke, C. & Sonntag, R. E. 2009 Fundamentals of Thermodynamics. Wiley.
Bourgat, J.-F., Desvillettes, L., Le Tallec, P. & Perthame, B. 1994 Microreversible collisions for polyatomic gases and Boltzmann’s theorem. Eur. J. Mech. (B/Fluids) 13 (2), 237254.
Brull, S. & Schneider, J. 2009 On the ellipsoidal statistical model for polyatomic gases. Contin. Mech. Thermodyn. 20 (8), 489508.
Cai, Z. & Li, R. 2014 The NRxx method for polyatomic gases. J. Comput. Phys. 267, 6391.
Chikhaoui, A., Dudon, J. P., Genieys, S., Kustova, E. V. & Nagnibeda, E. A. 2000 Multitemperature kinetic model for heat transfer in reacting gas mixture flows. Phys. Fluids 12 (1), 220232.
Chikhaoui, A., Dudon, J. P., Kustova, E. V. & Nagnibeda, E. A. 1997 Transport properties in reacting mixture of polyatomic gases. Physica A 247 (1), 526552.
Cramer, M. S. 2012 Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24 (6), 066102.
Gallis, M. A., Torczynski, J. R. & Rader, D. J. 2007 A computational investigation of noncontinuum gas-phase heat transfer between a heated microbeam and the adjacent ambient substrate. Sensors Actuators A 134 (1), 5768.
Gallis, M. A. & Torczynski, J. R. 2011 Investigation of the ellipsoidal-statistical Bhatnagar–Gross–Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls. Phys. Fluids 23 (3), 030601.
Grad, H. 1949 On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2 (4), 331407.
Grad, H. 1958 Principles of the kinetic theory of gases. In Thermodynamik der Gase/Thermodynamics of Gases, pp. 205294. Springer.
Gad-el Hak, M. 2001 The MEMS Handbook. CRC Press.
Holway, L. H. 1966 New statistical models for kinetic theory: methods of construction. Phys. Fluids 9 (9), 16581673.
Karniadakis, G. E., Beskok, A. & Aluru, N. 2006 Microflows and Nanoflows: Fundamentals and Simulation, vol. 29. Springer.
Kremer, G. M. 2010 An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer.
Kustova, E. V. & Nagnibeda, E. A. 1996 Strong nonequilibrium effects on specific heats and thermal conductivity of diatomic gas. Chem. Phys. 208 (3), 313329.
Kustova, E. V. & Nagnibeda, E. A. 1998 Transport properties of a reacting gas mixture with strong vibrational and chemical nonequilibrium. Chem. Phys. 233 (1), 5775.
Kustova, E. V., Nagnibeda, E. A. & Chauvin, A. H. 1999 State-to-state nonequilibrium reaction rates. Chem. Phys. 248 (2), 221232.
Marques, W. 1999 Light scattering from extended kinetic models: polyatomic ideal gases. Physica A 264 (1), 4051.
Maxwell, J. C. 1879 On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. 170, 231256.
Müller, I. & Ruggeri, T. 2013 Rational Extended Thermodynamics, vol. 37. Springer.
Nagnibeda, E. & Kustova, E. 2009 Non-Equilibrium Reacting Gas Flows: Kinetic Theory of Transport and Relaxation Processes. Springer.
Poling, B. E., Prausnitz, J. M., O’connell, J. P. & others 2001 The Properties of Gases and Liquids, vol. 5. McGraw-Hill.
Rahimi, B. & Niazmand, H. 2014 Effects of high order slip/jump, thermal creep and variable thermo-physical properties on natural convection in microchannels with constant wall heat fluxes. Heat Transfer Engng 35 (18), 15281538.
Rahimi, B. & Struchtrup, H. 2014a Capturing non-equilibrium phenomena in rarefied polyatomic gases: a high-order macroscopic model. Phys. Fluids 26 (5), 052001.
Rahimi, B. & Struchtrup, H. 2014b Kinetic model and moment method for polyatomic gases. AIP Conf. Proc. 1628 (1), 618625.
Rahimi, B. & Struchtrup, H. 2014c Refined Navier–Stokes–Fourier equations for rarefied polyatomic gases. In ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, pp. V001T01A001V001T01A001. American Society of Mechanical Engineers.
Rana, A., Torrilhon, M. & Struchtrup, H. 2013 A robust numerical method for the r13 equations of rarefied gas dynamics: application to lid driven cavity. J. Comput. Phys. 236, 169186.
Reif, F. 2009 Fundamentals of Statistical and Thermal Physics. Waveland.
Ruggeri, T. & Sugiyama, M. 2015 Rational Extended Thermodynamics beyond the Monatomic Gas. Springer.
Rykov, V. A. 1975 A model kinetic equation for a gas with rotational degrees of freedom. Fluid Dyn. 10 (6), 959966.
Shakhov, E. M. 1968 Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3 (5), 9596.
Sharipov, F. 2003 Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. II. Slip and jump coefficients. Eur. J. Mech. (B/Fluids) 22 (2), 133143.
Singh, N. & Agrawal, A. 2014 The Burnett equations in cylindrical coordinates and their solution for flow in a microtube. J. Fluid Mech. 751, 121141.
Sone, Y. 2012 Kinetic Theory and Fluid Dynamics. Springer.
Struchtrup, H. 2004 Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys. Fluids 16 (11), 39213934.
Struchtrup, Henning 2005a Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. Multiscale Model. Simul. 3 (1), 221243.
Struchtrup, H. 2005b Macroscopic Transport Equations for Rarefied Gas Flows. Springer.
Struchtrup, H. 2012 Unique moment set from the order of magnitude method. Kinet. Relat. Models 5, 417440.
Struchtrup, H. & Torrilhon, M. 2013 Regularized 13 moment equations for hard sphere molecules: linear bulk equations. Phys. Fluids 25 (5), 052001.
Tantos, C., Valougeorgis, D. & Frezzotti, A. 2015 Conductive heat transfer in rarefied polyatomic gases confined between parallel plates via various kinetic models and the {DSMC} method. Intl J. Heat Mass Transfer 88, 636651.
Tantos, C., Valougeorgis, D., Pannuzzo, M., Frezzotti, A. & Morini, G. L. 2014 Conductive heat transfer in a rarefied polyatomic gas confined between coaxial cylinders. Intl J. Heat Mass Transfer 79, 378389.
Torrilhon, M., Au, J. D. & Struchtrup, H. 2003 Explicit fluxes and productions for large systems of the moment method based on extended thermodynamics. Contin. Mech. Thermodyn. 15 (1), 97111.
Torrilhon, M. & Struchtrup, H. 2008 Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J. Comput. Phys. 227 (3), 19822011.
Truesdell, C. & Muncaster, R. G. 1980 Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic.
Wu, L., White, C., Scanlon, T. J., Reese, J. M. & Zhang, Y. 2015 A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases. J. Fluid Mech. 763, 2450.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Macroscopic and kinetic modelling of rarefied polyatomic gases

  • Behnam Rahimi (a1) and Henning Struchtrup (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed