Skip to main content Accessibility help

Lubrication of soft viscoelastic solids

  • Anupam Pandey (a1), Stefan Karpitschka (a1), Cornelis H. Venner (a2) and Jacco H. Snoeijer (a1) (a3)


Lubrication flows appear in many applications in engineering, biophysics and nature. Separation of surfaces and minimisation of friction and wear is achieved when the lubricating fluid builds up a lift force. In this paper we analyse soft lubricated contacts by treating the solid walls as viscoelastic: soft materials are typically not purely elastic, but dissipate energy under dynamical loading conditions. We present a method for viscoelastic lubrication and focus on three canonical examples, namely Kelvin–Voigt, standard linear and power law rheology. It is shown how the solid viscoelasticity affects the lubrication process when the time scale of loading becomes comparable to the rheological time scale. We derive asymptotic relations between the lift force and the sliding velocity, which give scaling laws that inherit a signature of the rheology. In all cases the lift is found to decrease with respect to purely elastic systems.


Corresponding author

Email address for correspondence:


Hide All
Bissett, E. J. 1989 The line contact problem of elastohydrodynamic lubrication. I: asymptotic structure for low speeds. Proc. R. Soc. Lond. A 424 (1867), 393407.
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.
Chambon, F. & Winter, H. H. 1987 Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J. Rheol. 31 (8), 683697.
Desrochers, J., Amrein, M. W. & Matyas, J. R. 2012 Viscoelasticity of the articular cartilage surface in early osteoarthritis. Osteoarthr. Cartil. 20 (5), 413421.
Dowson, D. 1998 History of Tribology, 2nd edn. Wiley.
Feng, J. & Weinbaum, S. 2000 Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans. J. Fluid Mech. 422, 281317.
Ferry, J. D. 1961 Viscoelastic Properties of Polymers. Wiley.
Fitz-Gerald, J. M. 1969 Mechanics of red-cell motion through very narrow capillaries. Proc. R. Soc. Lond. B 174 (1035), 193227.
Hooke, C. J. & Huang, P. 1997 Elastohydrodynamic lubrication of soft viscoelastic materials in line contact. Proc. Inst. Mech. Engrs 211 (3), 185194.
Hooke, C. J. & O’Donoghue, J. P. 1972 Elastohydrodynamic lubrication of soft, highly deformed contacts. Proc. Inst. Mech. Engrs C 14 (1), 3448.
Hou, J. S., Mow, V. C., Lai, W. M. & Holmes, M. H. 1992 An analysis of the squeeze-film lubrication mechanism for articular cartilage. J. Biomech. 25 (3), 247259.
Johnson, K. L. 1987 Contact Mechanics. Cambridge University Press.
Jones, M. B., Fulford, G. R., Please, C. P., McElwain, D. L. S. & Collins, M. J. 2008 Elastohydrodynamics of the eyelid wiper. Bull. Math. Biol. 70 (2), 323343.
Karpitschka, S., Das, S., van Gorcum, M., Perrin, H., Andreotti, B. & Snoeijer, J. H. 2015 Droplets move over viscoelastic substrates by surfing a ridge. Nat. Commun. 6, 7891.
Leroy, S. & Charlaix, E. 2011 Hydrodynamic interactions for the measurement of thin film elastic properties. J. Fluid Mech. 674, 389407.
Leroy, S., Steinberger, A., Cottin-Bizonne, C., Restagno, F., Léger, L. & Charlaix, É. 2012 Hydrodynamic interaction between a spherical particle and an elastic surface: a gentle probe for soft thin films. Phys. Rev. Lett. 108, 264501.
Mani, M., Gopinath, A. & Mahadevan, L. 2012 How things get stuck: kinetics, elastohydrodynamics, and soft adhesion. Phys. Rev. Lett. 108 (22), 226104.
Martin, A., Clain, J., Buguin, A. & Brochard-Wyart, F. 2002 Wetting transitions at soft, sliding interfaces. Phys. Rev. E 65, 031605.
Mow, V. C., Ateshian, G. A. & Spilker, R. L. 1993 Biomechanics of diarthrodial joints: a review of twenty years of progress. Trans. ASME. J. Biomech. Engng 115 (4B), 460467.
Ng, T. S. K. & McKinley, G. H. 2008 Power law gels at finite strains: the nonlinear rheology of gluten gels. J. Rheol. 52 (2).
Reynolds, O. 1886 On the theory of lubrication and its application to Mr Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. R. Soc. Lond. 177, 157.
Saintyves, B., Jules, T., Salez, T. & Mahadevan, L. 2016 Self-sustained lift and low friction via soft lubrication. Proc. Natl Acad. Sci. 113 (21), 58475849.
Salez, T. & Mahadevan, L. 2015 Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall. J. Fluid Mech. 779, 181196.
Scaraggi, M. & Persson, B. N. J. 2014 Theory of viscoelastic lubrication. Tribol. Intl 72, 118130.
Secomb, T. W., Skalak, R., Özkaya, N. & Gross, J. F. 1986 Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163, 405423.
Sekimoto, K. & Leibler, L. 1993 A mechanism for shear thickening of polymer-bearing surfaces: elasto-hydrodynamic coupling. Europhys. Lett. 23 (2), 113117.
Skotheim, J. M. & Mahadevan, L. 2004 Soft lubrication. Phys. Rev. Lett. 92 (24), 245509.
Skotheim, J. M. & Mahadevan, L. 2005 Soft lubrication: the elastohydrodynamics of nonconforming and conforming contacts. Phys. Fluids 17 (9), 123.
Snoeijer, J. H., Eggers, J. & Venner, C. H. 2013 Similarity theory of lubricated Hertzian contacts. Phys. Fluids 25 (10), 101705.
Snoeijer, J. H. & van der Weele, K. 2014 Physics of the granite sphere fountain. Am. J. Phys. 82 (11).
Trickey, W. R., Lee, G. M. & Guilak, F. 2000 Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 18 (6), 891898.
Urzay, J. 2010 Asymptotic theory of the elastohydrodynamic adhesion and gliding motion of a solid particle over soft and sticky substrates at low Reynolds numbers. J. Fluid Mech. 653, 391429.
Urzay, J., Llewellyn Smith, S. G. & Glover, B. J. 2007 The elastohydrodynamic force on a sphere near a soft wall. Phys. Fluids 19 (10), 103106.
Venner, C. H. & Lubrecht, A. A. 2000 Multi-Level Methods in Lubrication. Elsevier Science.
Wang, Y., Dhong, C. & Frechette, J. 2015 Out-of-contact elastohydrodynamic deformation due to lubrication forces. Phys. Rev. Lett. 115, 248302.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed