Skip to main content Accessibility help

Low-order model for successive bifurcations of the fluidic pinball

  • Nan Deng (a1) (a2), Bernd R. Noack (a2) (a3) (a4), Marek Morzyński (a5) and Luc R. Pastur (a1)


We propose the first least-order Galerkin model of an incompressible flow undergoing two successive supercritical bifurcations of Hopf and pitchfork type. A key enabler is a mean-field consideration exploiting the symmetry of the mean flow and the asymmetry of the fluctuation. These symmetries generalize mean-field theory, e.g. no assumption of slow growth rate is needed. The resulting five-dimensional Galerkin model successfully describes the phenomenogram of the fluidic pinball, a two-dimensional wake flow around a cluster of three equidistantly spaced cylinders. The corresponding transition scenario is shown to undergo two successive supercritical bifurcations, namely a Hopf and a pitchfork bifurcation on the way to chaos. The generalized mean-field Galerkin methodology may be employed to describe other transition scenarios.


Corresponding author

Email address for correspondence:


Hide All
Bansal, M. S. & Yarusevych, S. 2017 Experimental study of flow through a cluster of three equally spaced cylinders. Exp. Therm. Fluid Sci. 80, 203217.
Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75 (5), 750756.
Barkley, D. & Henderson, R. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.
Bonnavion, G. & Cadot, O. 2018 Unstable wake dynamics of rectangular flat-backed bluff bodies with inclination and ground proximity. J. Fluid Mech. 854, 196232.
Bourgeois, J. A., Noack, B. R. & Martinuzzi, R. J. 2013 Generalised phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake. J. Fluid Mech. 736, 316350.
Brunton, S. L. & Noack, B. R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67 (5), 050801.
Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2016 Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113 (5), 39323937.
Cadot, O., Evrard, A. & Pastur, L. 2015 Imperfect supercritical bifurcation in a three-dimensional turbulent wake. Phys. Rev. E 91 (6), 063005.
Cornejo Maceda, G. Y.2017 Machine learning control applied to wake stabilization. MS2 Internship Report, LIMSI and ENSAM, Paris, France.
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3), 8511112.
Ding, Y. & Kawahara, M. 1999 Three-dimensional linear stability analysis of incompressible viscous flows using the finite element method. Intl J. Numer. Meth. Fluids 31 (2), 451479.
Fabre, D., Auguste, F. & Magnaudet, J. 2008 Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20 (5), 051702.
Fletcher, C. A. 1984 Computational Galerkin Methods, 1st edn. Springer.
Gomez, F., Blackburn, H. M., Rudman, M., Sharma, A. S. & McKeon, B. J. 2016 A reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent operator. J. Fluid Mech. 798, R2.
Gorban, A. N. & Karlin, I. V. 2005 Invariant Manifolds for Physical and Chemical Kinetics, Lecture Notes in Physics, vol. 660. Springer.
Grandemange, M., Cadot, O. & Gohlke, M. 2012 Reflectional symmetry breaking of the separated flow over three-dimensional bluff bodies. Phys. Rev. E 86 (3), 035302.
Grandemange, M., Gohlke, M. & Cadot, O. 2013 Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. J. Fluid Mech. 722, 5184.
Grandemange, M., Gohlke, M. & Cadot, O. 2014 Statistical axisymmetry of the turbulent sphere wake. Exp. Fluids 55 (11), 1838.
Gumowski, K., Miedzik, J., Goujon-Durand, S., Jenffer, P. & Wesfreid, J. E. 2008 Transition to a time-dependent state of fluid flow in the wake of a sphere. Phys. Rev. E 77 (5), 055308.
Hopf, E. 1948 A mathematical example displaying features of turbulence. Commun. Pure Appl. Maths 1, 303322.
Ishar, R., Kaiser, E., Morzynski, M., Fernex, D., Semaan, R., Albers, M., Meysonnat, P., Schröder, W. & Noack, B. R. 2019 Metric for attractor overlap. J. Fluid Mech. 874, 720755.
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.
Jordan, D. W. & Smith, P. 1999 Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems, vol. 2. Oxford University Press.
Lam, K. & Cheung, W. C. 1988 Phenomena of vortex shedding and flow interference of three cylinders in different equilateral arrangements. J. Fluid Mech. 196, 126.
Landau, L. D. 1944 On the problem of turbulence. C. R. Acad. Sci. USSR 44, 311314.
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Course of Theoretical Physics, vol. 6. Pergamon Press.
Loiseau, J. C., Noack, B. R. & Brunton, S. L. 2018 Sparse reduced-order modeling: sensor-based dynamics to full-state estimation. J. Fluid Mech. 844, 459490.
Luchtenburg, D. M., Günter, B., Noack, B. R., King, R. & Tadmor, G. 2009 A generalized mean-field model of the natural and actuated flows around a high-lift configuration. J. Fluid Mech. 623, 283316.
Malkus, W. V. R. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1, 521539.
Manneville, P. 2010 Instabilities, Chaos and Turbulence, vol. 1. World Scientific.
Meliga, P., Chomaz, J.-M. & Sipp, D. 2009 Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159189.
Mittal, R. 1999 Planar symmetry in the unsteady wake of a sphere. AIAA J. 37 (3), 388390.
Morzynski, M., Afanasiev, K. & Thiele, F. 1999 Solution of the eigenvalue problems resulting from global non-parallel flow stability analysis. Comput. Meth. Appl. Mech. Engng 169 (1), 161176.
Newhouse, S., Ruelle, D. & Takens, F. 1978 Occurrence of strange Axiom A attractors near quasi periodic flows on T m, m⩾3. Commun. Math. Phys. 64 (1), 3540.
Noack, B. R. 2016 From snapshots to modal expansions – bridging low residuals and pure frequencies. J. Fluid Mech. 802, 14.
Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
Noack, B. R. & Eckelmann, H. 1994a A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297330.
Noack, B. R. & Eckelmann, H. 1994b Theoretical investigation of the bifurcations and the turbulence attractor of the cylinder wake. Z. Angew. Math. Mech. 74 (5), T396T397.
Noack, B. R. & Morzyński, M.2017 The fluidic pinball – a toolkit for multiple-input multiple-output flow control (version 1.0). Tech. Rep. 02/2017. Chair of Virtual Engineering, Poznan University of Technology, Poland.
Noack, B. R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzyński, M., Comte, P. & Tadmor, G. 2008 A finite-time thermodynamics of unsteady fluid flows. J. Non-Equilibr. Thermodyn. 33, 103148.
Noack, B. R., Stankiewicz, W., Morzyński, M. & Schmid, P. J. 2016 Recursive dynamic mode decomposition of transient and post-transient wake flows. J. Fluid Mech. 809, 843872.
Price, S. J. & Paidoussis, M. P. 1984 The aerodynamic forces acting on groups of two and three circular cylinders when subject to a cross-flow. J. Wind Engng Ind. Aerodyn. 17 (3), 329347.
Rempfer, D. 1994 On the structure of dynamical systems describing the evolution of coherent structures in a convective boundary layer. Phys. Fluids 6 (3), 14021404.
Rempfer, D. & Fasel, H. F. 1994 Evolution of three-dimensional coherent structures in a flat-plate boundary-layer. J. Fluid Mech. 260, 351375.
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical model and comparisons with experiments. J. Fluid Mech. 54, 263288.
Rigas, G., Oxlade, A. R., Morgans, A. S. & Morrison, J. F. 2014 Low-dimensional dynamics of a turbulent axisymmetric wake. J. Fluid Mech. 755, R5.
Rigas, G., Schmidt, O. T., Colonius, T. & Bres, G. A. 2017 One way Navier–Stokes and resolvent analysis for modeling coherent structures in a supersonic turbulent jet. In 23rd AIAA/CEAS Aeroacoustics Conference, Denver, CO. AIAA.
Roweis, S. T. & Saul, L. K. 2000 Nonlinear dimensionality reduction by locally linear embedding. Science 290 (5500), 23232326.
Rowley, C. W. & Dawson, S. T. 2017 Model reduction for flow analysis and control. Ann. Rev. Fluid Mech. 49, 387417.
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 645, 115127.
Ruelle, D. & Takens, F. 1971 On the nature of turbulence. Les rencontres physiciens-mathématiciens de Strasbourg-RCP25 12, 144.
Sayers, A. T. 1987 Flow interference between three equispaced cylinders when subjected to a cross flow. J. Wind Engng Ind. Aerodyn. 26 (1), 119.
Schatz, M. F., Barkley, D. & Swinney, H. L. 1995 Instability in a spatially periodic open flow. Phys. Fluids 7 (2), 344358.
Schewe, G. 1983 On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 133, 265285.
Schlegel, M. & Noack, B. R. 2015 On long-term boundedness of Galerkin models. J. Fluid Mech. 765, 325352.
Schmid, P. J. 2010 Dynamic mode decomposition for numerical and experimental data. J. Fluid Mech. 656, 528.
Schumm, M., Berger, E. & Monkewitz, P. A. 1994 Self-excited oscillations in the wake of two-dimensional bluff bodies and their control. J. Fluid Mech. 271, 1753.
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593 (1), 333358.
Strogatz, S., Friedman, M., Mallinckrodt, A. J. & McKay, S. 1994 Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Comput. Phys. 8 (5), 532532.
Strykowski, P. J. & Sreenivasan, K. R. 1990 On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers. J. Fluid Mech. 218, 71107.
Stuart, J. T. 1958 On the non-linear mechanics of hydrodynamic stability. J. Fluid Mech. 4, 121.
Swift, J. & Hohenberg, P. C. 1977 Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15 (1), 319328.
Szaltys, P., Chrust, M., Przadka, A., Goujon-Durand, S., Tuckerman, L. S. & Wesfreid, J. E. 2012 Nonlinear evolution of instabilities behind spheres and disks. J. Fluids Struct. 28, 483487.
Tadmor, G., Lehmann, O., Noack, B. R., Cordier, L., Delville, J., Bonnet, J.-P. & Morzyński, M. 2011 Reduced order models for closed-loop wake control. Phil. Trans. R. Soc. Lond. A 369 (1940), 15131524.
Taira, K., Brunton, S. L., Dawson, S. T., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V. & Ukeiley, L. S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55 (12), 40134041.
Tatsuno, M., Amamoto, H. & Ishi-i, K. 1998 Effects of interference among three equidistantly arranged cylinders in a uniform flow. Fluid Dyn. Res. 22 (5), 297315.
Taylor, C. & Hood, P. 1973 A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1, 73100.
Turton, S. E., Tuckerman, L. S. & Barkley, D. 2015 Prediction of frequencies in thermosolutal convection from mean flows. Phys. Rev. E 91 (4), 043009.
Watson, J. 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow. J. Fluid Mech. 9, 371389.
Zaitsev, V. M. & Shliomis, M. I. 1971 Hydrodynamic fluctuations near convection threshold. Sov. Phys. JETP 32, 866.
Zhang, H.-Q., Noack, B. R. & Eckelmann, H.1994 Numerical computation of the 3-D cylinder wake. Tech. Rep. 3/1994. Max-Planck-Institut für Strömungsforschung, Göttingen, Germany.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Low-order model for successive bifurcations of the fluidic pinball

  • Nan Deng (a1) (a2), Bernd R. Noack (a2) (a3) (a4), Marek Morzyński (a5) and Luc R. Pastur (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.