Skip to main content Accessibility help

Low-mode internal tide generation by topography: an experimental and numerical investigation



We analyse the low-mode structure of internal tides generated in laboratory experiments and numerical simulations by a two-dimensional ridge in a channel of finite depth. The height of the ridge is approximately half of the channel depth and the regimes considered span sub- to supercritical topography. For small tidal excursions, of the order of 1% of the topographic width, our results agree well with linear theory. For larger tidal excursions, up to 15% of the topographic width, we find that the scaled mode 1 conversion rate decreases by less than 15%, in spite of nonlinear phenomena that break down the familiar wave-beam structure and generate harmonics and inter-harmonics. Modes two and three, however, are more strongly affected. For this topographic configuration, most of the linear baroclinic energy flux is associated with the mode 1 tide, so our experiments reveal that nonlinear behaviour does not significantly affect the barotropic to baroclinic energy conversion in this regime, which is relevant to large-scale ocean ridges. This may not be the case, however, for smaller scale ridges that generate a response dominated by higher modes.


Corresponding author

Email address for correspondence:


Hide All

Present address: Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8.



Hide All
Aguilar, D. A. & Sutherland, B. R. 2006 Internal wave generation from rough topography. Phys. Fluids 18, 066603.
Bell, T. H. 1975 Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech. 67, 705722.
Di Lorenzo, E., Young, W. R. & Llewellyn Smith, S. G. 2006 Numerical and analytical estimates of M2 tidal conversion at steep oceanic ridges. J. Phys. Oceanogr. 36, 10721084.
Egbert, G. D. & Ray, R. D. 2000 Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405, 775778.
Flynn, M. R., Onu, K. & Sutherland, B. R. 2003 Internal wave generation by a vertically oscillating sphere. J. Fluid Mech. 494, 6593.
Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.
Hurley, D. G. & Keady, G. 1997 The generation of internal waves by vibrating elliptic cylinders. Part 2. Approximate viscous solution. J. Fluid Mech. 351, 119138.
Korobov, A. S. & Lamb, K. G. 2008 Interharmonics in internal gravity waves generated by tide-topography interaction. J. Fluid Mech. 611, 6195.
Kunze, E. & Llewellyn Smith, S. G. 2004 The role of small-scale topography in turbulent mixing of the global ocean. Oceanography 17, 5564.
Lamb, K. G. 2004 Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography. Geophys. Res. Lett. 31, L09313.
Legg, S. & Huijts, K. M. H. 2006 Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep-Sea Res. II 53, 140156.
Lighthill, M. J. 1978 Waves in Fluids. Cambridge University Press.
Llewellyn Smith, S. G. & Young, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid Mech. 495, 175191.
Nash, J. D., Alford, M. H. & Kunze, E. 2005 Estimating internal wave energy fluxes in the ocean. J. Atmos. Ocean. Technol. 22, 15511570.
Oster, G. 1965 Density gradients. Sci. Am. 213, 7076.
Peacock, T., Echeverri, P. & Balmforth, N. J. 2008 An experimental investigation of internal tide generation by two-dimensional topography. J. Phys. Oceanogr. 38, 235242.
Peacock, T. & Tabaei, A. 2005 Visualization of nonlinear effects in reflecting internal wave beams. Phys. Fluids 17, 061702.
Pétrélis, F., Llewellyn Smith, S. G. & Young, W. R. 2006 Tidal conversion at a submarine ridge. J. Phys. Oceanogr. 36, 10531071.
Ray, R. D. & Mitchum, G. T. 1997 Surface manifestation of internal tides in the deep ocean: osbservations from altimetry and island gauges. Prog. Oceanogr. 40, 135162.
Rudnick, D. L., Boyd, T. J., Brainard, R. E., Carter, G. S., Egbert, G. D., Gregg, M. C., Holloway, P. E., Klymak, J. M., Kunze, E., Lee, C. M., Levine, M. D., Luther, D. S., Martin, J. P., Merrifield, M. A., Moum, J. N., Nash, J. D., Pinkel, R., Rainville, L. & Sanford, T. B. 2003 From tides to mixing along the Hawaiian ridge. Science 301, 355357.
Simmons, H. L., Hallberg, R. W. & Arbic, B. K. 2004 Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II 51, 30433068.
Spiegel, E. A. & Veronis, G. 1960 On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442447.
St.Laurent, L. C. & Garrett, C. 2002 The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 32, 28822899.
Tabaei, A., Akylas, T. R. & Lamb, K. G. 2005 Nonlinear effects in reflecting and colliding internal wave beams. J. Fluid Mech. 526, 217243.
Zhang, H. P., King, B. & Swinney, H. L. 2007 Experimental study of internal gravity waves generated by supercritical topography. Phys. Fluids 19, 096602.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

Low-mode internal tide generation by topography: an experimental and numerical investigation



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.