Skip to main content Accessibility help

Low-dimensional characteristics of a transonic jet. Part 2. Estimate and far-field prediction

  • C. E. TINNEY (a1), L. S. UKEILEY (a2) and M. N. GLAUSER (a3)


Complementary low-dimensional techniques are modified to estimate the most energetic turbulent features of a Mach 0.85 axisymmetric jet in the flow's near-field regions via spectral linear stochastic estimation. This model estimate is three-dimensional, comprises all three components of the velocity field and is time resolved. The technique employs the pressure field as the unconditional input, measured within the hydrodynamic periphery of the jet flow where signatures (pressure) are known to comprise a reasonable footprint of the turbulent large-scale structure. Spectral estimation coefficients are derived from the joint second-order statistics between coefficients that are representative of the low-order pressure field (Fourier-azimuthal decomposition) and of the low-order velocity field (proper orthogonal decomposition). A bursting-like event is observed in the low-dimensional estimate and is similar to what was found in the low-speed jet studies of others. A number of low-dimensional estimates are created using different velocity–pressure mode combinations from which predictions of the far-field acoustics are invoked using Lighthill's analogy. The overall sound pressure level (OASPL) directivity is determined from the far-field prediction, which comprises qualitatively similar trends when compared to direct measurements at r/D=75. Retarded time topologies of the predicted field at 90° and 30° are also shown to manifest, respectively, high- and low-frequency wave-like motions when using a combination of only the low-order velocity modes (m=0, 1, 2). This work thus constitutes a first step in developing low-dimensional and dynamical system models from hydrodynamic pressure signatures for estimating and predicting the behaviour of the energy-containing events that govern many of the physical constituents of turbulent flows.



Hide All
Adrian, R. J. 1977 On the role of conditional averages in turbulence theory. Turbulence in Liquids; Proc. 4th Biennal Symp. Missouri, USA (A77-40426 18-34), Princeton, NJ, pp. 323–332. Science Press.
Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid. Mech. 23, 261304.
Adrian, R. J. 1996 Stochastic estimation of the structure of turbulent flows. Eddy Structure Identification (ed. Bonnet, J. P.), pp. 145195. Springer.
Alkislar, M. B.Krothapalli, A. & Butler, G. W. 2007 The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet. J. Fluid Mech. 578, 139169.
Arakeri, V. H., Krothapalli, A., Siddavaram, V., Alkislar, M. B. & Lourenco, L. M. 2003 On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet. J. Fluid Mech. 490, 7598.
Arndt, R. E. A., Long, D. F. & Glauser, M. N. 1997 The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet, J. Fluid Mech. 340, 133.
Aubry, N., Holmes, P., Lumley, J. & Stone, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115173.
Batchelor, G. K. 1951 Pressure fluctuations in isotropic turbulence. Proc. Camb. Phil. Soc. 47, 359374.
Bendat, J. S. & Piersol, A. G. 1980 Engineering Applications of Correlation and Spectral Analysis. John Wiley.
Bergmann, M., Cordier, L. & Blancher, J.-P. 2005 Optimal rotary control of the cylindrical wake using proper orthogonal decomposition reduced-order model. Phys. Fluids 17, 097101-1.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–75.
Bonnet, J.-P., Cole, D. R., Delville, J., Glauser, M. N. & Ukeiley, L. S. 1994 Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure. Exps. Fluids 17 (5), 307314.
Borée, J. 2003 Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exps. Fluids 35, 188192.
Bradshaw, P., Ferriss, D. H. & Johnson, R. F. 1964 Turbulence in the noise-producing region of a circular jet. J. Fluid Mech. 19, 591624.
Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.
Chang, P. 1985 Fluctuating pressure and velocity fields in the near field of a round jet. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, USA.
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765777.
Citriniti, J. H. & George, W. K. 2000 Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition. J. Fluid Mech. 418, 137166.
Coiffet, F., Delville, J., Ricaud, F. & Valiere, J. C. 2004 Nearfield pressure of a subsonic free jet, estimation and separation of hydrodynamic and acoustic components. Proc. 10th European Turbulence Conf. (ed. Anderson, H. I. & Krogstad, P. A.), Trondheim, Norway, p. 168.
Coiffet, F., Jordan, P., Delville, J., Gervais, Y. & Ricaud, F. 2006 Coherent structures in subsonic jets: a quasi-irrotational source mechanism? Intl. J. Aeroacoust 5, 6789.
Crighton, D. G. 1975 Basic principles of aerodynamic noise generation. Prog. Aerospace Sci. 16, 3196.
Druault, P., Delville, J. & Bonnet, J.-P. 2005 Experimental 3D analysis of the large scale behavior of a plane turbulent mixing layer? Flow Turbulence Combust. 74, 207233.
Elsinga, G. E., Scarano, F., Wieneke, B. & Oudheusden, B. W. 2006 Tomographic particle image velocimetry. Expe. Fluids 41, 933947.
Ewing, D. & Citriniti, J. 1999 Examination of a LSE/POD complementary technique using single and multi-time information in the axisymmetric shear layer. Proc. IUTAM Symp. in Lynby, Denmark, 25–29 May, 1997 (ed. Sorensen, J. N., Hopfinger, E. J. & Aubry, N.), pp. 375384. Kluwer.
Ffowcs Williams, L. E. & Kempton, A. J. 1978 The noise from the large scale structure of a jet. J. Fluid Mech. 84, 673694.
Freund, J. B. 2001 Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277305.
Freund, J. B. & Colonius, T. 2002 POD analysis of sound generation by a turbulent jet. AIAA Paper 2002-0072.
Freund, J. B., Samanta, A., Wei, M. & Lele, S. 2005 The robustness of acoustic analogies. AIAA Paper 2005-2940.
Gamard, S., Jung, D. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 2. The far-field region. J. Fluid Mech. 514, 205230.
George, W. K., Beuther, P. D. & Arndt, R. E. A. 1984 Pressure spectra in turbulent free shear flows. J. Fluid Mech. 148, 155191.
Glauser, M. N. 1987 Coherent structures in the axisymmetric turbulent jet mixing layer. PhD dissertation, State University of New York at Buffalo. Amherst.
Glauser, M. N. & George, W. K. 1987 Orthogonal decomposition of the axisymmetric jet mixing layer including azimuthal dependence. Advances in Turbulence (ed. Comte-Bellot, G. & Mathieu, J.), 357366. Springer.
Glauser, M. N., Leib, S. J. & George, W. K. 1985 Coherent structures in the axisymmetric turbulent jet mixing layer. Proc. fifth Symp. Turb. Shear Flows, Cornell University, Ithaca, NY, USA.
Glauser, M. N., Zheng, X. & Doering, C. 1991 The dynamics of organized structures in the axisymmetric jet mixing layer. Trubulence and Coherent Structures (ed. Lesieur, M. & Metais, O.), pp. 253265. Kluwer.
Glauser, M. N., Young, M. J., Higuchi, H., Tinney, C. E. & Carlson, H. 2004 POD based experimental flow control on a NACA-4412 airfoil. AIAA Paper 2004-0575.
Gordeyev, S. V. & Thomas, F. O. 2002 Coherent structure in turbulent planar jet. Part 2. Structural topology via POD eigenmode projection. J. Fluid Mech. 460, 349380.
Grinstein, F. F., Glauser, M. N. & George, W. K. 1995 Vorticity in jets. In Fluid Vortices (ed. Green, S. I.), pp. 6594. Kluwer.
Guitton, A., Tinney, C. E., Jordan, P. & Delville, J. 2007 Measurements in a co-axial subsonic jet. AIAA Paper 2007-0015.
Hall, A. M., Glauser, M. N. & Tinney, C. E. 2005 Experimental investigation of the pressure–velocity correlation of a M = 0.6 axisymmetric jet. AIAA Paper 2005-5294.
Hall, J. W. & Ewing, D. 2006 A combined spatial and temporal decomposition of the coherent structures in the three-dimensional wall jet. AIAA Paper 2006-0308.
Hileman, J. I., Thurow, B. S., Caraballo, E. J. & Samimy, M. 2005 Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. J. Fluid Mech. 544, 277307.
Hudy, L. M., Naguib, A. & Humphreys, W. M. 2007 Stochastic estimation of a separated-flow field using wall-pressure-array measurements. Phys. Fluids. 19 (2), 024103.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Res. Rep. CTR-S88, 193–208.
Hussain, A. K. M. F. & Clark, A. R. 1981 On the coherent structure of the axisymmetric mixing layer: a flow-visualization study. J. Fluid Mech. 104, 263294.
Iqbal, M. O. & Thomas, F. O. 2007 Coherent structures in a turbulent jet via a vector implementation of the proper orthogonal decomposition. J. Fluid Mech. 571, 281326.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Jordan, P. & Gervais, Y. 2007 Subsonic jet aeroacoustic: associating experiment, modelling and simulation. Exps. Fluids 44 (1), 121.
Jordan, P., Schlegel, M., Stalnov, O., Noack, B. R. & Tinney, C. E. 2007 Identifying noisy and quiet modes in a jet. AIAA Paper 2007-3602.
Jung, D., Gamard, S. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region. J. Fluid Mech. 514, 173204.
Kerhervé, F., Jordan, P., Gervais, Y., Valière, J. C. & Braud, P. 2004 Two-point laser Doppler velocimetry measurements in a Mach 1.2 cold supersonic jet for statistical aeroacoustic source model. Exps. Fluids 37 (3), 419437.
Ko, N. W. M. & Davies, P. O. A. L. 1971 The near field within the potential cone of subsonic cold jets. J. Fluid Mech. 50, 4978.
Lau, J. C., Fisher, M. J. & Fuchs, H. V. 1972 The intrinsic structure of turbulent jets. J. Sound Vib. 22 (4), 379406.
Lau, J. C., Morris, P. J. & Fisher, M. J. 1979 Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech. 93, 127.
Laufer, J. & Yen, T. C. 1983 Noise generation by a Low Mach number jet. J. Fluid Mech. 134, 131.
Lighthill, M. J. 1952 On sound generated aerodynamically: general theory. Proc. R. Soc. Lond. 211, 564587.
Lumley, J. L. 1967 The structure of inhomogenous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation (ed. Yaglom, A. M. & Tatarski, V. I.), pp. 166178. Nauka, Moscow.
Lumley, J. L. 1981 Coherent structure in turbulence. In Transition and Turbulence (ed. Meyer, R. E.), p. 215. Academic.
Mankbadi, R. & Liu, J. T. C. 1984 Sound generated aerodynamically revisited: large-scale structures in a turbulent jet as a source of sound. Phil. Trans. R. Soc. Lond. A 311, 183217.
Michalke, A. & Fuchs, H. V. 1975 On turbulence and noise of an axisymmetric shear layer. J. Fluid Mech. 70, 179205.
Möhring, W. 1978 On vortex sound at low Mach number. J. Fluid Mech. 85, 685691.
Murray, N. E. & Ukeiley, L. S. 2006 Flow field dynamics in open cavity flows. AIAA Paper 2006-2428, 1–16.
Noack, B. R., Afanasiev, K., Morzynski, M. & Thiele, F. 1993 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
Pan, G. & Meng, H. 2002 Digital holographic PIV for 3D flow measurement. ASME Paper 2002-33173.
Perret, L., Collin, E. & Delville, J. 2006 Polynomial identification of POD based low-order dynamical systems. J. Turbulence 7, 115.
Petersen, R. A. 1978 Influence of wave dispersion on vortex pairing in a jet. J. Fluid Mech. 89, 469495.
Picard, C. & Delville, J. 2000 Pressure velocity coupling in a subsonic round jet. Intl J. Heat Fluid Flow 21, 359364.
Pinier, J. T., Ausseur, J. M., Glauser, M. N. & Higuchi, H. 2007 Proportional closed-loop feedback control of flow separation. AIAA J. 45 (1), 181190.
Powell, A. 1964 Theory of vortex sound. J. Acoust. Soc. Am. 36, 177195.
Powell, A. 1998 Aerodynamic and Jet Noise. John Wiley.
Pu, Y., Song, X., Meng, H. 2000 Off-axis holographic particle image velocimetry for diagnosing particulate flows. Exps. Fluids 29 (7), 117128.
Raffel, M., Willert, C. & Kompenhans, J. 1998 Particle Image Velocimetry. Springer.
Rempfer, D. 2000 On low-dimensional Galerkin models for fluid flow. Theor. Comput. Fluid Dyn. 14, 7588.
Ribner, H. S. 1969 Quadrupole correlations governing the pattern of jet noise. J. Fluid Mech. 38 (1), 124.
Rowley, C. W., Colonius, T. & Murray, R. M. 2004 Model reduction for compressible flows using POD and Galerkin projection. Physica D 189 (1–2), 115129.
Schram, C. & Hirschberg, A. 2003 Application of vortex sound theory to vortex-pairing noise: sensitivity to errors in flow data. J. Sound Vib. 266, 10791098.
Taylor, J. A. & Glauser, M. N. 2004 Towards practical flow sensing and control via POD and LSE based low-dimensional tools. Trans. ASME I: J. Fluids Engng 126, 337345.
Taylor, J. T., Ukeiley, L. S. & Glauser, M. N. 2001 A low-dimensional description of the compressible axisymmetric shear layer. AIAA Paper 2001-0292, 1–10.
Tinney, C. E. 2005 Low-dimensional techniques for sound source identification in high speed jets. PhD dissertation, Syracuse University, Syracuse.
Tinney, C. E. & Jordan, P. 2008 The near-field pressure surrounding co-axial subsonic jets. J. Fluid Mech. 611, 175204.
Tinney, C. E., Taylor, J. A., Eaton, E. & Glauser, M. N. 2002 Low dimensional descriptions of axisymmetric flows. Proc. 9th European Turbulence Conf. Southampton, UK (ed. Castro, I. P. & Hancock, P. E.).
Tinney, C. E., Hall, A., Glauser, M. N., Ukeiley, L. S. & Coughlin, T. 2004 Designing an anechoic chamber for the experimental study of high speed heated jets. AIAA Paper 2004-0010.
Tinney, C. E., Glauser, M. N. & Ukeiley, L. S. 2005 The evolution of the most energetic modes in a high subsonic Mach number turbulent jet. AIAA Paper 2005-0417.
Tinney, C., Coiffet, F., Delville, J., Glauser, M., Jordan, P & Hall, A. 2006 On spectral linear stochastic estimation. Exps. Fluids 41 (5), 763775.
Tinney, C. E., Jordan, P., Delville, J., Hall, A. M. & Glauser, M. N. 2007 A time-resolved estimate of the turbulence and sound source mechanisms in a subsonic jet flow. J. Turbulence 8 (7), 120.
Tinney, C. E., Glauser, M. N. & Ukeiley, L. S. 2008 Low-dimensional characteristics of a transonic jet. Part 1. Proper orthogonal decomposition. J. Fluid Mech. 612, 107141.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Ukeiley, L. S. & Murray, N. E. 2007 Modified quadratic stochastic estimation of resonating subsonic cavity flow. J. Turbulence 8, p. 53.
Ukeiley, L. S. & Ponton, M. K. 2004 On the near field pressure of a transonic axisymmetric jet. Intl. J. Aeroacoust. 3 (1), 4366.
Ukeiley, L. S., Cole, D. R. & Glauser, M. N. 1993 An examination of the axisymmetric jet mixing layer using coherent structure detection techniques. Eddy Structure Identification in Free Turbulent Shear Flows., Proc. of the IUTAM Symp.-Poitiers October 1992 (ed. Bonnet, J.-P. & Glauser, M. N.), 550–534. Kluwer.
Ukeiley, L., Seiner, J. & Ponton, M. 1999 Azimuthal structure of an axisymmetric jet mixing layer. ASME Paper FEDSM 1999-7252.
Ukeiley, L., Cordier, L., Manceau, R., Delville, J., Glauser, M. N. & Bonnet, J. P. 2001 Examination of large scale structures in a turbulent plane mixing layer. Part 2. Dynamical systems model. J. Fluid Mech. 441, 67108.
Ukeiley, L. S., Tinney, C. E., Mann, R. & Glauser, M. N. 2007 Spatial correlations in a transonic jet. AIAA J. 45 (6), 13571369.
Viswanathan, K. 2004 Aeroacoustics of hot jets. J. Fluid Mech. 516, 3982.
Wernet, M. P. 2006 Time resolved PIV for space–time correlations in hot jets. AIAA Paper 2006-0047.
Yule, A. J. 1978 Large-scale structure in the mixing layer of a round jet. J. Fluid Mech. 89, 413432.
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices. J. Fluid Mech. 387, 353396.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed