## References

Abarzhi, S. I.
2008
Review of nonlinear dynamics of the unstable fluid interface: conservation laws and group theory. Phys. Scr.
T132, 014012.

Arnett, W. D., Bahcall, J. N., Kirshner, R. P. & Woosley, S. E.
1989
Supernova 1987A. Annu. Rev. Astron. Astrophys.
27, 629–700.

Bell, G. I.
1951
Taylor instability on cylinders and spheres in the small amplitude approximation. In Los Alamos National Laboratory, Los Alamos, NM, Report LA, vol. 1321.

Biamino, L., Jourdan, G., Mariani, C., Houas, L., Vandenboomgaerde, M. & Souffland, D.
2015
On the possibility of studying the converging Richtmyer-Meshkov instability in a conventional shock tube. Exp. Fluids
56 (2), 1–5.

Brouillette, M.
2002
The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech.
34, 445–468.

Chisnell, R. F.
1998
An analytic description of converging shock waves. J. Fluid Mech.
354, 357–375.

Collins, B. D. & Jacobs, J. W.
2002
PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF_{6} interface. J. Fluid Mech.
464, 113–136.

Dell, Z., Stellingwerf, R. F. & Abarzhi, S. I.
2015
Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks. Phys. Plasmas
22 (9), 092711.

Dimotakis, P. E. & Samtaney, R.
2006
Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids
18 (3), 031705.

Ding, J., Si, T., Yang, J., Lu, X., Zhai, Z. & Luo, X.
2017
Shock tube experiments on converging Richtmyer-Meshkov instability. Phys. Rev. Lett.
119, 014501.

Fincke, J. R., Lanier, N. E., Batha, S. H., Hueckstaedt, R. M., Magelssen, G. R., Rothman, S. D., Parker, K. W. & Horsfield, C. J.
2005
Effect of convergence on growth of the Richtmyer-Meshkov instability. Laser Part. Beams
23 (1), 21–25.

Hosseini, S. H. R. & Takayama, K.
2005
Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves. Phys. Fluids
17, 084101.

Isenberg, C.
1992
The Science of Soap Films and Soap Bubbles. Dover.

Kumar, S., Hornung, H. G. & Sturtevant, B.
2003
Growth of shocked gaseous interfaces in a conical geometry. Phys. Fluids
15, 3194–3207.

Lanier, N. E., Barnes, C. W., Batha, S. H., Day, R. D., Magelssen, G. R., Scott, J. M., Dunne, A. M., Parker, K. W. & Rothman, S. D.
2003
Multimode seeded Richtmyer-Meshkov mixing in a convergent, compressible, miscible plasma system. Phys. Plasmas
10, 1816–1821.

Lei, F., Ding, J., Si, T., Zhai, Z. & Luo, X.
2017
On a sinusoidal air/SF_{6} interface accelerated by a cylindrically converging shock. J. Fluid Mech.
826, 819–829.

Lindl, J. D., Landen, O., Edwards, J., Moses, E. & Team, NIC
2014
Review of the national ignition campaign 2009–2012. Phys. Plasmas
21, 020501.

Liu, W. H., He, X. T. & Yu, C. P.
2012
Cylindrical effects on Richtmyer-Meshkov instability for arbitrary Atwood numbers in weakly nonlinear regime. Phys. Plasmas
19 (7), 072108.

Liu, W. H., Yu, C. P., Ye, W. H., Wang, L. F. & He, X. T.
2014
Nonlinear theory of classical cylindrical Richtmyer-Meshkov instability for arbitrary Atwood numbers. Phys. Plasmas
21 (6), 062119.

Lombardini, M., Pullin, D. I. & Meiron, D. I.
2014
Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. J. Fluid Mech.
748, 85–112.

Luo, X., Ding, J., Wang, M., Zhai, Z. & Si, T.
2015
A semi-annular shock tube for studying cylindrically converging Richtmyer-Meshkov instability. Phys. Fluids
27 (9), 091702.

Luo, X., Si, T., Yang, J. & Zhai, Z.
2014a
A cylindrical converging shock tube for shock-interface studies. Rev. Sci. Instrum.
85, 015107.

Luo, X., Wang, X. & Si, T.
2013
The Richtmyer-Meshkov instability of a three-dimensional air/SF_{6} interface with a minimum-surface feature. J. Fluid Mech.
722, R2.

Luo, X., Zhai, Z., Si, T. & Yang, J.
2014b
Experimental study on the interfacial instability induced by shock waves. Adv. Mech.
44, 260–290.

Matsuoka, C. & Nishihara, K.
2006
Analytical and numerical study on a vortex sheet in incompressible Richtmyer-Meshkov instability in cylindrical geometry. Phys. Rev. E
74 (6), 066303.

Meshkov, E. E.
1969
Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn.
4, 101–104.

Meshkov, E. E., Nevmerzhitsky, N. V. & Zmushko, V. V.
1997a
On possibilities of investigating hydrodynamic instabilities and turbulent mixing development in spherical geometry. In Proc. of the 6th IWPCTM, pp. 343–347.

Meshkov, E. E., Nikiforov, V. V. & Tolshmyakov, A. I.
1997b
Investigation into turbulent mixing development at gas–gas interface driven by a convergent cylindrical shock wave. In Proc. of the 6th IWPCTM, pp. 348–351.

Mikaelian, K. O.
2005
Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids
17, 094105.

Mohaghar, M., Carter, J., Musci, B., Reilly, D., McFarland, J. & Ranjan, D.
2017
Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech.
831, 779–825.

Perry, R. W. & Kantrowitz, A.
1951
The production and stability of converging shock waves. J. Appl. Phys.
22 (7), 878–886.

Plesset, M. S.
1954
On the stability of fluid flows with spherical symmetry. J. Appl. Phys.
25, 96–98.

Ranjan, D., Oakley, J. & Bonazza, R.
2011
Shock-bubble interactions. Annu. Rev. Fluid Mech.
43, 117–140.

Rayleigh, Lord
1883
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc.
14, 170–177.

Richtmyer, R. D.
1960
Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths.
13, 297–319.

Rikanati, A., Oron, D., Sadot, O. & Shvarts, D.
2003
High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability. Phys. Rev. E
67, 026307.

Si, T., Long, T., Zhai, Z. & Luo, X.
2015
Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J. Fluid Mech.
784, 225–251.

Si, T., Zhai, Z. & Luo, X.
2014
Experimental study of Richtmyer-Meshkov instability in a cylindrical converging shock tube. Laser Part. Beams
32 (3), 343–351.

Takayama, K., Kleine, H. & Grönig, H.
1987
An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids
5 (5), 315–322.

Taylor, G.
1950
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes 1. Proc. R. Soc. Lond.
201, 192–196.

Wang, L. F., Wu, J. F., Guo, H. Y., Ye, W. H., Liu, J., Zhang, W. Y. & He, X. T.
2015
Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces. Phys. Plasmas
22 (8), 082702.

Wouchuk, J. G.
2001a
Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected. Phys. Rev. E
63 (5), 056303.

Wouchuk, J. G.
2001b
Growth rate of the Richtmyer-Meshkov instability when a rarefaction is reflected. Phys. Plasmas
8 (6), 2890–2907.

Yang, J., Kubota, T. & Zukoski, E. E.
1993
Application of shock-induced mixing to supersonic combustion. AIAA J.
31, 854–862.

Zabusky, N.
1999
Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments. Annu. Rev. Fluid Mech.
31, 495–536.

Zhai, Z., Liu, C., Qin, F., Yang, J. & Luo, X.
2010
Generation of cylindrical converging shock waves based on shock dynamics theory. Phys. Fluids
22, 041701.

Zhai, Z., Si, T., Luo, X., Yang, J., Liu, C., Tan, D. & Zou, L.
2012
Parametric study on the cylindrical converging shock waves generated based on shock dynamics theory. Phys. Fluids
24, 026101.

Zhou, Y.
2017
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing II. Phys. Rep.
723–725, 1–160.