Skip to main content Accessibility help
×
Home

Long waves through emergent coastal vegetation

  • Chiang C. Mei (a1) (a2), I-Chi Chan (a2), Philip L.-F. Liu (a2) (a3), Zhenhua Huang (a4) and Wenbin Zhang (a4)...

Abstract

We study the effects of emergent coastal forests on the propagation of long surface waves of small amplitude. The forest is idealized by an array of vertical cylinders. Simple models are employed to represent bed friction and to simulate turbulence generated by flow through the tree trunks. A multi-scale (homogenization) analysis similar to that for seepage flows is carried out to deduce the effective equations on the macro-scale. The effective coefficients are calculated by numerically solving the micro-scale problem in a unit cell surrounding one or several cylinders. Analytical and numerical solutions for wave attenuation on the macro-scale for different bathymetries and coastal forest configurations are presented. For a transient incident wave, analytical results are discussed for the damping of a leading tsunami. For comparison series of laboratory data for periodic and transient incident waves are also presented. Good agreement is found even though some of the measured waves are short or nonlinear.

Copyright

Corresponding author

Email address for correspondence: ccmei@mit.edu

References

Hide All
1. Augustin, L. N., Irish, J. L. & Lynett, P. 2009 Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coast. Engng 56, 332340.
2. Auriault, J.-L. 1980 Dynamic behavior of a porous medium saturated by a Newtonian fluid. Internat. J. Eng. Sci. 18, 775785.
3. Bateman, H. 1954 Table of Integral Transforms, vol. 1 (ed. Erdrélyi, A. ). McGraw-Hill.
4. Carmen, P. C. 1937 Fluid flow through granular beds. Trans. Inst. Chem. Engrs 15, 1516.
5. Carslaw, H. S. & Jaeger, J. C. 1963 Operational Methods in Applied Mathematics. Dover.
6. Danielsen, F., Sørensen, M. K., Olwig, M. F., Selvam, V., Parish, F. & Burgess, N. D. 2005 The asian tsunami: a protective role for coastal vegetation. Science 310, 643.
7. Dasa, S. & Vincent, J. R. 2009 Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl Acad. Sci. USA 106, 73577360.
8. Ene, H. L. & Sanchez-Palencia, E. 1975 Équations et phénomènes de surface pour l’écoulement dans un modèle de milieu poreux. J. Méc. 14, 73108.
9. Fernando, H. J. S., Samarawickrama, S. P., Balasubramanian, S., Hettiarachchi, S. S. L. & Voropayev, S. 2008 Effects of porous barriers such as coral reefs on coastal wave propagation. J. Hydro-environ. Res. 1, 187194.
10. Hiraishi, T. & Harada, K. 2003 Greenbelt tsunami prevention in south-Pacific region. Rep. Port and Airport Research Institute 43 (2), 123.
11. Huang, Z., Yao, Yao, Sim, S. Y. & Yao, Yu 2010 Interaction of solitary waves with emergent rigid vegetation. Ocean Engng 38, 10801088.
12. Irtem, E., Gedik, N., Kabdasli, M. S. & Yasa, N. E. 2009 Coastal forest effects on tsunami run-up heights. Ocean Engng 36, 313320.
13. Kajiura, K. 1963 The leading wave of a tsunami. Bull. Earthq. Res. 41, 525571.
14. Keller, J. B. 1980 Darcy’s law for flow in porous media and the two-space method. In Nonlinear Partial Differential Equations in Engineering and Applied Science (ed. Sternberg, R. L. et al. ). Lecture Notes in Pure and Applied Mathematics , vol. 54. pp. 429443. Dekker.
15. Keller, J. B. & Keller, H. B. 1964 Water wave run-up on a beach. ONR. Res. Rep. Contract No. NONNR-3828(00), Department of the Navy.
16. Kobayashi, N., Raichlen, A. W. & Asano, T. 1993 Wave attenuation by vegetation. J. Waterways Port Coast. Ocean Engng 119, 3048.
17. Liu, P. L.-F., Lynett, P., Fernando, H., Jaffe, B. E., Fritz, H., Higman, B., Morton, R., Goff, J. & Synolakis, C. 2005 Observations by the international tsunami survey team in Sri Lanka. Science 308, 1595.
18. Mazda, Y., Kobashi, D. & Okada, S. 2005 Tidal-scale hydrodynamics within mangrove swamps. Wetlands Ecol. Manage. 13, 647655.
19. Massel, S. R., Furukawa, K. & Binkman, R. M. 1999 Surface wave propagation in mangrove forests. Fluid Dyn. Res. 24, 219249.
20. Mei, C. C. 1983 The Applied Dynamics of Ocean Surface Waves. Wiley.
21. Mei, C. C. & Vernescu, B. 2010 Homogenization Methods for Multiscale Mechanics. World Scientific.
22. Möller, I. 2006 Quantifying saltmarsh vegetation and its effect on wave height dissipation: results from a UK East coast saltmarsh. Estuar. Coast. Shelf Sci. 69, 337351.
23. Möller, I., Spencer, T., French, J. R., Leggett, D. J. & Dixon, M. 1999 Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England. Estuar. Coast. Shelf Sci. 49, 411426.
24. Nepf, H. M. 1999 Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35, 479489.
25. Nielsen, P. 1992 Coastal Bottom Boundary Layers and Sediment Transport. World Scientific.
26. Phillips, O. M. 1977 Dynamics of the Upper Ocean. Cambridge University Press.
27. Sheng, P. & Zhou, M. Y. 1988 Dynamic permeability of porous media. Phy. Rev. Lett. 61, 19511954.
28. Suzuki, T., Dijkstra, J. & Stive, M. J. F. 2008 Wave dissipation on a vegetated salt marsh. Proc. Intl Conf. Coast. Engng 331339.
29. Swart, D. H. 1974 Offshore sediment transport and equilibrium beach profiles. Delft Hydr. Lab. Publ. No. 131.
30. Tanaka, N., Sasaki, Y., Mowjood, M. I. M., Jinadasa, K. B. S. N. & Homchuen, S. 2007 Coastal vegetation structures and their function in tsunami protection: experience of the recent Indian Ocean tsunami. Landscape Ecol. Engng 3, 3345.
31. Thuy, N., Tanimoto, K., Tanaka, N., Harada, K. & Iimura, K. 2009 Effect of open gap in coastal forest on tsunami run-up – investigations by experiment and numerical simulation. Ocean Engng. 36, 12581269.
32. Wolanski, E. 1992 Hydrodynamics of mangrove swamps and their coastal waters. Hydrobiologia 247, 141161.
33. Wolanski, E., Jones, M. & Bunt, J. S. 1980 Hydrodynamics of a tidal creek-mangrove swamp system. Austral. J. Mar. Freshwat. Res. 31, 431450.
34. Zhou, M. Y. & Sheng, P. 1989 First-principle calculation of dynamic permeability of porous media. Phy. Rev. B. 39, 1202712039.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed