Skip to main content Accessibility help
×
Home

Localized edge states in the asymptotic suction boundary layer

  • T. Khapko (a1), T. Kreilos (a2) (a3), P. Schlatter (a1), Y. Duguet (a4), B. Eckhardt (a2) (a5) and D. S. Henningson (a1)...

Abstract

The dynamics on the laminar–turbulent separatrix is investigated numerically for boundary-layer flows in the subcritical regime. Constant homogeneous suction is applied at the wall, resulting in a parallel asymptotic suction boundary layer (ASBL). When the numerical domain is sufficiently extended in the spanwise direction, the coherent structures found by edge tracking are invariably localized and their dynamics shows bursts that drive a remarkable regular or irregular spanwise dynamics. Depending on the parameters, the asymptotic dynamics on the edge can be either periodic in time or chaotic. A clear mechanism for the regeneration of streaks and streamwise vortices emerges in all cases and is investigated in detail.

Copyright

Corresponding author

Email address for correspondence: taras@mech.kth.se

References

Hide All
Antonia, R. A., Fulachier, L., Krishnamoorthy, L. V., Benabid, T. & Anselmet, F. 1988 Influence of wall suction on the organized motion in a turbulent boundary layer. J. Fluid Mech. 190, 217240.
Biau, D. 2012 Laminar–turbulent separatrix in a boundary layer flow. Phys. Fluids 24, 034107.
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.
Cherubini, S., De Palma, P., Robinet, J. C. & Bottaro, A. 2011 Edge states in a boundary layer. Phys. Fluids 23, 051705.
Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson, D. S. 2007 A pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep. TRITA-MEK 2007:07. KTH Mechanics, Stockholm, Sweden.
Duguet, Y., Schlatter, P. & Henningson, D. S. 2009 Localized edge states in plane Couette flow. Phys. Fluids 21, 111701.
Duguet, Y., Schlatter, P., Henningson, D. S. & Eckhardt, B. 2012 Self-sustained localized structures in a boundary-layer flow. Phys. Rev. Lett. 108, 044501.
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2010 Slug genesis in cylindrical pipe flow. J. Fluid Mech. 663, 180208.
Fransson, J. H. M. & Alfredsson, P. H. 2003 On the disturbance growth in an asymptotic suction boundary layer. J. Fluid Mech. 482, 5190.
Gibson, J. F. 2012 ChannelFlow: a spectral Navier–Stokes simulator in C++. Tech. Rep. University of New Hampshire, http://channelflow.org.
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.
Henningson, D. S., Spalart, P. R. & Kim, J. 1987 Numerical simulations of turbulent spots in plane Poiseuille and boundary-layer flow. Phys. Fluids 30, 29142917.
Hocking, L. M. 1975 Non-linear instability of the asymptotic suction velocity profile. Q. J. Mech. Appl. Maths 28 (3), 341353.
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703716.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.
Jiménez, J., Kawahara, G., Simens, M. P., Nagata, M. & Shiba, M. 2005 Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions. Phys. Fluids 17, 015105.
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.
Kreilos, T., Veble, G., Schneider, T. M. & Eckhardt, B. 2012 Edge states for the turbulence transition in the asymptotic suction boundary layer. J. Fluid Mech.  arXiv:1209.0593 (submitted).
Levin, O. & Henningson, D. S. 2007 Turbulent spots in the asymptotic suction boundary layer. J. Fluid Mech. 584, 397414.
Lundbladh, A. & Johansson, A. V. 1991 Direct simulation of turbulent spots in plane Couette flow. J. Fluid Mech. 229, 499516.
Mariani, P., Spalart, P. R. & Kollmann, W. 1993 Direct simulation of a turbulent boundary layer with suction. In Near-Wall Turbulent Flows (ed. So, R. M. C., Speziale, C. G. & Launder, B. E.), pp. 347356. Elsevier Science.
Mellibovsky, F., Meseguer, A., Schneider, T. M. & Eckhardt, B. 2009 Transition in localized pipe flow turbulence. Phys. Rev. Lett. 103, 054502.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.
Schlatter, P., Brandt, L., De Lange, H. C. & Henningson, D. S. 2008 On streak breakdown in bypass transition. Phys. Fluids 20, 101505.
Schlatter, P. & Örlü, R. 2011 Turbulent asymptotic suction boundary layers studied by simulation. J. Phys.: Conf. Ser. 318, 022020.
Schlichting, H. 1987 Boundary-Layer Theory, 7th edn. McGraw-Hill.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.
Schneider, T. M., Eckhardt, B. & Yorke, J. A. 2007 Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502.
Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F. & Eckhardt, B. 2008 Laminar–turbulent boundary in plane Couette flow. Phys. Rev. E 78, 037301.
Schneider, T. M., Marinc, D. & Eckhardt, B. 2010 Localized edge states nucleate turbulence in extended plane Couette cells. J. Fluid Mech. 646, 441451.
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to ${R}_{\theta } = 1410$ . J. Fluid Mech. 187, 6198.
Spalart, P. R. & Yang, K. S. 1987 Numerical study of ribbon-induced transition in Blasius flow. J. Fluid Mech. 178, 345365.
Toh, S. & Itano, T. 2003 A periodic-like solution in channel flow. J. Fluid Mech. 481, 6776.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Khapko et al. supplementary movies
Three-dimensional visualisation of the left hopping edge state (L). Re = 500, box size (Lx,Ly,Lz)=(6π,15,50) (for details refer to figure 6 in the paper).

 Video (9.7 MB)
9.7 MB
VIDEO
Movies

Khapko et al. supplementary movies
Three-dimensional visualisation of the left-right hopping edge state (LR). Re = 500, box size (Lx,Ly,Lz)=(6π,15,50) (for details refer to figure 6 in the paper).

 Video (6.1 MB)
6.1 MB

Localized edge states in the asymptotic suction boundary layer

  • T. Khapko (a1), T. Kreilos (a2) (a3), P. Schlatter (a1), Y. Duguet (a4), B. Eckhardt (a2) (a5) and D. S. Henningson (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed