Skip to main content Accessibility help
×
Home

Local transport of passive scalar released from a point source in a turbulent boundary layer

  • K. M. Talluru (a1), J. Philip (a2) and K. A. Chauhan (a1)

Abstract

Simultaneous measurements of streamwise velocity ( $\tilde{U}$ ) and concentration ( $\tilde{C}$ ) for a horizontal plume released at eight different vertical locations within a turbulent boundary layer are discussed in this paper. These are supplemented by limited simultaneous three-component velocity and concentration measurements. Results of the integral time scale ( $\unicode[STIX]{x1D70F}_{c}$ ) of concentration fluctuations across the width of the plume are presented here for the first time. It is found that $\unicode[STIX]{x1D70F}_{c}$ has two distinct peaks: one closer to the plume centreline and the other at a vertical distance of plume half-width above the centreline. The time-averaged streamwise concentration flux is found to be positive and negative, respectively, below and above the plume centreline. This behaviour is a resultant of wall-normal velocity fluctuations ( $w$ ) and Reynolds shear stress ( $\overline{uw}$ ). Confirmation of these observations is found in the results of joint probability density functions of $u$ (streamwise velocity fluctuations) and $\tilde{C}$ as well as that of $w$ and $\tilde{C}$ . Results of cross-correlation coefficient show that high- and low-momentum regions have a distinctive role in the transport of passive scalar. Above the plume centreline, low-speed structures have a lead over the meandering plume, while high-momentum regions are seen to lag behind the plume below its centreline. Further examination of the phase relationship between time-varying $u$ and $c$ (concentration fluctuations) via cross-spectrum analysis is consistent with this observation. Based on these observations, a phenomenological model is presented for the relative arrangement of a passive scalar plume with respect to large-scale velocity structures in the flow.

Copyright

Corresponding author

Email address for correspondence: murali.talluru@sydney.edu.au

References

Hide All
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.
Antonia, R. A., Danh, H. Q. & Prabhu, A. 1977 Response of a turbulent boundary layer to a step change in surface heat flux. J. Fluid Mech. 80 (1), 153177.
Arya, S. P. S. 1975 Buoyancy effects in a horizontal flat-plate boundary layer. J. Fluid Mech. 68 (2), 321343.
Baidya, R., Philip, J., Hutchins, N., Monty, J. P. & Marusic, I. 2017 Distance from the wall scaling of turbulent motions in wall-bounded flows. Phys. Fluids 29 (2), 020712.
Chatwin, P. C. & Sullivan, P. J. 1979 The relative diffusion of a cloud of passive contaminant in incompressible turbulent flow. J. Fluid Mech. 91 (2), 337355.
Chauhan, K. A., Nagib, H. M. & Monkewitz, P. A. 2009 Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41, 021404.
Chauhan, K., Philip, J. & Marusic, I. 2014a Scaling of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 751, 298328.
Chauhan, K. A., Philip, J., de Silva, C. M., Hutchins, N. & Marusic, I. 2014b The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.
Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.
Csanady, G. 1973 Turbulent Diffusion in the Environment. Reidel.
Del Álamo, J. C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.
Dennis, D. J. C. & Nickels, T. B. 2008 On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech. 614, 197206.
Duplat, J. & Villermaux, E. 2008 Mixing by random stirring in confined mixtures. J. Fluid Mech. 617, 5186.
Durbin, P. A. 1980 A stochastic model of two-particle dispersion and concentration fluctuations in homogeneous turbulence. J. Fluid Mech. 100 (2), 279302.
Fackrell, J. E. 1980 A flame ionisation detector for measuring fluctuating concentration. J. Phys. E: Sci. Instrum. 13 (8), 888.
Fackrell, J. E. & Robins, A. G. 1982 Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer. J. Fluid Mech. 117, 126.
Finnigan, J. J., Shaw, R. H. & Patton, E. G. 2009 Turbulence structure above a vegetation canopy. J. Fluid Mech. 637, 387424.
Gifford, F. 1959 Statistical properties of a fluctuating plume dispersion model. Adv. Geophys. 6, 117137.
Hay, J. S. & Pasquill, F. 1959 Diffusion from a continuous source in relation to the spectrum and scale of turbulence. Adv. Geophys. 6, 345365.
Herpin, S., Stanislas, M., Foucaut, J. M. & Coudert, S. 2013 Influence of the Reynolds number on the vortical structures in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 716, 550.
Huang, J., Katul, G. & Albertson, J. 2013 The role of coherent turbulent structures in explaining scalar dissimilarity within the canopy sublayer. Environ. Fluid Mech. 13 (6), 571599.
Hunt, J. C. R. & Weber, A. H. 1979 A Lagrangian statistical analysis of diffusion from a ground-level source in a turbulent boundary layer. Q. J. R. Meteorol. Soc. 105 (444), 423443.
Hutchins, N. & Marusic, I. 2007a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Hutchins, N. & Marusic, I. 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365, 647664.
Katul, G., Kuhn, G., Schieldge, J. & Hsieh, C. I. 1997 The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meteorol. 83 (1), 126.
Klewicki, J. 2013 Self-similar mean dynamics in turbulent wall flows. J. Fluid Mech. 718, 596621.
Klewicki, J. C., Murray, J. A. & Falco, R. E. 1994 Vortical motion contributions to stress transport in turbulent boundary layers. Phys. Fluids 6 (1), 277286.
Krishnamoorthy, L. V. & Antonia, R. A. 1987 Temperature-dissipation measurements in a turbulent boundary layer. J. Fluid Mech. 176, 265281.
Li, D. & Bou-Zeid, E. 2011 Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol. 140 (2), 243262.
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.
McComb, W. 1990 The Physics of Fluid Turbulence. Oxford University Press.
Meinhart, C. D. & Adrian, R. J. 1995 On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7 (4), 694696.
Morrill-Winter, C., Philip, J. & Klewicki, J. 2017 An invariant representation of mean inertia: theoretical basis for a log law in turbulent boundary layers. J. Fluid Mech. 813, 594617.
Nironi, C., Salizzoni, P., Marro, M., Mejean, P., Grosjean, N. & Soulhac, L. 2015 Dispersion of a passive scalar fluctuating plume in a turbulent boundary layer. Part I: Velocity and concentration measurements. Boundary-Layer Meteorol. 156 (3), 415446.
Poreh, M. & Cermak, J. E. 1964 Study of diffusion from a line source in a turbulent boundary layer. Intl J. Heat Mass Transfer 7 (10), 10831095.
Robins, A. G. 1978 Plume dispersion from ground level sources in simulated atmospheric boundary layers. Atmos. Environ. 12 (5), 10331044.
Sawford, B. L., Frost, C. C. & Allan, T. C. 1985 Atmospheric boundary-layer measurements of concentration statistics from isolated and multiple sources. Boundary-Layer Meteorol. 31 (3), 249268.
de Silva, C. M., Philip, J., Hutchins, N. & Marusic, I. 2017 Interfaces of uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 820, 451478.
Smith, F. B. & Hay, J. S. 1961 The expansion of clusters of particles in the atmosphere. Q. J. R. Meteorol. Soc. 87 (371), 82101.
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.
Talluru, K. M., Hernandez-Silva, C., Philip, J. & Chauhan, K. A. 2017a Measurements of scalar released from point sources in a turbulent boundary layer. Meas. Sci. Technol. 28 (5), 055801.
Talluru, K. M., Hernandez-Silva, C., Philip, J. & Chauhan, K. A. 2017b Measurements of velocity and concentration in a high Reynolds number turbulent boundary layer. In Tenth International Symposium on Turbulence and Shear Flow Phenomena, Chicago, USA.
Talluru, K. M., Kulandaivelu, V., Hutchins, N. & Marusic, I. 2014 A calibration technique to correct sensor drift issues in hot-wire anemometry. Meas. Sci. Technol. 25 (10), 105304.
Tavoularis, S. & Corrsin, S. 1981 Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1. J. Fluid Mech. 104, 311347.
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 2 (1), 196212.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Townsend, A. A. 1958 Turbulent flow in a stably stratified atmosphere. J. Fluid Mech. 3 (4), 361372.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Vanderwel, C. & Tavoularis, S. 2014 Measurements of turbulent diffusion in uniformly sheared flow. J. Fluid Mech. 754, 488514.
Vanderwel, C. & Tavoularis, S. 2016 Scalar dispersion by coherent structures in uniformly sheared flow generated in a water tunnel. J. Turbul. 17 (7), 633650.
Weil, J. C. 2012 Atmospheric dispersion. In Handbook of Environmental Fluid Dynamics, Volume Two: Systems, Pollution Modeling and Measurements (ed. Fernando, H. J.), pp. 163174. CRC Press.
Willis, G. E. & Deardorff, J. W. 1978 A laboratory study of dispersion from an elevated source within a modeled convective planetary boundary layer. Atmos. Environ. 12 (6–7), 13051311.
Yee, E. & Biltoft, C. A. 2004 Concentration fluctuation measurements in a plume dispersing through a regular array of obstacles. Boundary-Layer Meteorol. 111 (3), 363415.
Yee, E., Kosteniuk, P. R., Chandler, G. M., Biltoft, C. A. & Bowers, J. F. 1993 Statistical characteristics of concentration fluctuations in dispersing plumes in the atmospheric surface layer. Boundary-Layer Meteorol. 65 (1–2), 69109.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Local transport of passive scalar released from a point source in a turbulent boundary layer

  • K. M. Talluru (a1), J. Philip (a2) and K. A. Chauhan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed