Skip to main content Accessibility help

Linear stability and saddle-node bifurcation of electromagnetically driven electrolyte flow in an annular layer

  • John McCloughan (a1) and Sergey A. Suslov (a1)


Comprehensive linear stability study of flow in an annular layer of electrolyte driven by the action of the Lorentz force is conducted following the analysis of steady axisymmetric solutions of Suslov et al. (J. Fluid Mech., vol. 828, 2017, pp. 573–600). It is shown that an experimentally observed instability in the form of anticyclonic moving vortices reported in Pérez-Barrera et al. (Magnetohydrodynamics, vol. 51 (2), 2015, pp. 203–213) develops on a background of the basic flow consisting of two tori with the opposite azimuthal vorticity components. It is found that, while the background flow is driven electromagnetically, the appearance of vortices is purely due to hydrodynamic effects: shear of the flow and centrifugal inertial forcing. The current study has also revealed that the unstable two-torus basic flow has a stable single-torus counterpart, both emanating from a saddle-node bifurcation of steady states when the Lorentz force is sufficiently strong. The transition from a one-torus to two-torus flow at weaker forcing is abrupt and leads to the appearance of vortices as soon as it occurs. The ranges of layer depths and Reynolds numbers for which vortices develop on a steady background are determined. Subsequently, weakly nonlinear amplitude expansion is used to find an approximate unsteady solution beyond the saddle-node bifurcation.


Corresponding author

Email address for correspondence:


Hide All
Antar, G., Lalti, A. & Habchi, C. 2019 The spontaneous breaking of axisymmetry in shallow rotating flows. Phys. Fluids 31, 074104.
Bödewadt, U. T. 1940 Die Drehströmung über festem Grunde. Z. Angew. Math. Mech. 20, 241253.
Bondarenko, N. F., Gak, E. Z. & Gak, M. Z. 2002 Application of MHD effects in electrolytes for modeling vortex processes in natural phenomena and in solving engineering-physical problems. J. Engng Phys. Thermophys. 75 (5), 12341247.
Crouch, J. D. & Herbert, T. 1993 A note on the calculation of Landau constants. Phys. Fluids A 5, 283285.
Davidson, P. A. 2001 An Introduction to Magneto-Hydrodynamics. Cambridge University Press.
Dey, P. & Suslov, S. A. 2016 Thermomagnetic instabilities in a vertical layer of ferrofluid: nonlinear analysis away from a critical point. Fluid Dyn. Res. 48, 061404.
Digilov, R. M. 2007 Making a fluid rotate: circular flow of a weakly conducting fluid induced by a Lorentz body force. Am. J. Phys. 75 (4), 361367.
Dolzhanskii, F. V., Krymov, V. A. & Manin, D. Y. 1990 Stability and vortex structures of quasi-two-dimensional shear flows. Sov. Phys. Uspekhi 33 (7), 495520.
Dovzhenko, V. A., Krymov, V. A. & Ponomarev, V. M. 1984 Experimental and theoretical study of a shear flow driven by an axisymmetric force. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana (in Russian) 20 (8), 693704.
Dovzhenko, V. A., Novikov, Y. A. & Obukhov, A. M. 1979 Modelling of the process of generation of vortices in an axisymmetric azimuthal field using a magnetohydrodynamic method. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana (in Russian) 15 (11), 11991202.
Dovzhenko, V. A., Obukhov, A. M. & Ponomarev, V. M. 1981 Generation of vortices in an axisymmetric shear flow. Fluid Dyn. 16 (4), 510518.
Ekman, V. W. 1905 On the influence of the Earth’s rotation on ocean currents. Arkiv. Mat. Ast. Fys. 2 (11), 152.
Faller, A. J. 1991 Instability and transition of disturbed flow over a rotating disk. J. Fluid Mech. 236, 245269.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Kenjeres, S. 2011 Electromagnetically driven dwarf tornados in turbulent convection. Phys. Fluids 23, 015103.
Krymov, V. A. 1989 Stability and supercritical regimes of quasi-two-dimensional shear flow in the presence of external friction (experiment). Fluid Dyn. 24 (2), 170176.
Lilly, D. K. 1966 On the instability of Ekman boundary layer. J. Atmos. Sci. 23, 481494.
MacKerrell, S. O. 2005 Stability of Bödewadt flow. Phil. Trans. R. Soc. Lond. A 363, 11811187.
Manin, D. Y. 1989 Stability and supercritical regimes of quasi-two-dimensional shear flow in the presence of external friction (theory). Fluid Dyn. 24 (2), 177183.
Moffatt, H. K. 1991 Electromagnetic stirring. Phys. Fluids A 3, 13361343.
Moisy, F., Doaré, O., Pasutto, T., Daube, O. & Rabaud, M. 2004 Experimental and numerical study of the shear layer instability between two counter-rotating disks. J. Fluid Mech. 507, 175202.
Pérez-Barrera, J., Ortiz, A. & Cuevas, S. 2016 Analysis of an annular MHD stirrer for microfluidic applications. In Recent Advances in Fluid Dynamcis with Environmental Applications (ed. Klapp, J., Sigalotti, L. D. G., Ovando, A. M., Villa, A. L. & Chavarría, G. R.), pp. 275288. Springer.
Pérez-Barrera, J., Pérez-Espinoza, J. E., Ortiz, A., Ramos, E. & Cuevas, S. 2015 Instability of electrolyte flow driven by an azimuthal Lorentz force. Magnetohydrodynamics 51 (2), 203213.
Pérez-Barrera, J., Ramírez-ZÚñiga, G., Grespan, E. C., Cuevas, S. & del Río, J. A. 2019 Thermographic visualization of a flow instability in an electromagnetically driven electrolyte layer. Exp. Therm. Fluid Sci. 109, 109882.
Pham, K. G. & Suslov, S. A. 2018 On the definition of Landau constants in amplitude equations away from a critical point. R. Soc. Open Sci. 5, 180746.
Qin, M. & Bau, H. H. 2012 Magnetohydrodynamic flow of a binary electrolyte in a concentric annulus. Phys. Fluids 24, 037101.
Rayleigh, Lord 1916 On the dynamics of revolving fluids. Proc. R. Soc. Lond. 93, 148154.
Satijn, M. P., Cense, A. W., Verzicco, R., Clercx, H. J. H. & van Heijst, G. J. F. 2001 Three-dimensional structure and decay properties of vortices in shallow fluid layers. Phys. Fluids 13 (7), 19311945.
Schaeffer, N. & Cardin, P. 2005 Quasigeostrophic model of the instabilities of the Stewartson layer in flat and depth-varying containers. Phys. Fluids 17, 104111.
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.
Suslov, S. A. & Cuevas, S. 2017 Numerical modelling of axisymmetric electromagnetically driven flows in thin layers. In Proceedings of the 18th Biennial Computational Techniques and Applications Conference, CTAC-2016 (ed. Droniou, J., Page, M. & Clarke, S.), ANZIAM J., vol. 58, pp. C46C56. Australian Mathematical Society.
Suslov, S. A. & Paolucci, S. 1997 Nonlinear analysis of convection flow in a tall vertical enclosure under non-Boussinesq conditions. J. Fluid Mech. 344, 141.
Suslov, S. A., Pérez-Barrera, J. & Cuevas, S. 2017 Electromagnetically driven flow of electrolyte in a thin annular layer: axisymmetric solutions. J. Fluid Mech. 828, 573600.
Yang, W., Delbende, I., Fraigneau, Y. & Witkowski, L. M. 2019 Axisymmetric rotating flow with free surface in a cylindrical tank. J. Fluid Mech. 861, 796814.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Linear stability and saddle-node bifurcation of electromagnetically driven electrolyte flow in an annular layer

  • John McCloughan (a1) and Sergey A. Suslov (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.