Skip to main content Accessibility help
×
Home

Linear stability analysis of a premixed flame with transverse shear

  • Xiaoyi Lu (a1) and Carlos Pantano (a1)

Abstract

One-dimensional planar premixed flames propagating in a uniform flow are susceptible to hydrodynamic instabilities known (generically) as Darrieus–Landau instabilities. Here, we extend that hydrodynamic linear stability analysis to include a lateral shear. This generalization is a situation of interest for laminar and turbulent flames when they travel into a region of shear (such as a jet or shear layer). It is shown that the problem can be formulated and solved analytically and a dispersion relation can be determined. The solution depends on a shear parameter in addition to the wavenumber, thermal expansion ratio, and Markstein lengths. The study of the dispersion relation shows that perturbations have two types of behaviour as wavenumber increases. First, for small shear, we recover the Darrieus–Landau results except for a region at small wavenumbers, large wavelengths, that is stable. Initially, increasing shear has a stabilizing effect. But, for sufficiently high shear, the flame becomes unstable again and its most unstable wavelength can be much smaller than the Markstein length of the zero-shear flame. Finally, the stabilizing effect of low shear can make flames with negative Markstein numbers stable within a band of wavenumbers.

Copyright

Corresponding author

Email address for correspondence: xlu19@illinois.edu

References

Hide All
Aldredge, R. C. 1996 Premixed flame propagation in a high-intensity, large-scale vortical flow. Combust. Flame 106 (1), 2940.
Ashurst, W. T. & Sivashinsky, G. I. 1991 On flame propagation through periodic flow fields. Combust. Sci. Technol. 80 (1–3), 159164.
Audoly, B., Berestycki, H. & Pomeau, Y. 2000 Réaction diffusion en écoulement stationnaire rapide. C. R. Acad. Sci. Paris II 328 (3), 255262.
Berestycki, H. & Sivashinsky, G. I. 1991 Flame extinction by periodic flow field. SIAM J. Appl. Maths 51 (2), 344350.
Brailovsky, I. & Sivashinsky, G. 1993 On quenching of the reaction wave moving through spatially periodic shear flow. Combust. Sci. Technol. 95 (1–6), 5160.
Brailovsky, I. & Sivashinsky, G. 1995 Extinction of a nonadiabatic flame propagating through spatially periodic shear flow. Phys. Rev. E 51 (2), 11721183.
Buckmaster, J. 1977 Slowly varying laminar flames. Combust. Flame 28, 225239.
Clavin, P. & Graña-Otero, J. C. 2011 Curved and stretched flames: the two Markstein numbers. J. Fluid Mech. 686, 187217.
Clavin, P. & Williams, F. A. 1982 Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech. 116, 251282.
Creta, F. & Matalon, M. 2011a Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225264.
Creta, F. & Matalon, M. 2011b Strain rate effects on the nonlinear development of hydrodynamically unstable flames. Proc. Combust. Inst. 33, 10871094.
Darrieus, G. 1938 Propagation d’un front de flamme. In La Téchnique Moderne and Congrés de Méchanique Appliquée, Cambridge University Press (1945).
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Driscoll, J. F. 2008 Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34 (1), 91134.
Hawkes, E. R., Chatakonda, O., Kolla, H., Kerstein, A. R. & Chen, J. H. 2012 A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame 159 (8), 26902703.
Joulin, G. & Sivashinsky, G. 1994 Influence of momentum and heat losses on the large-scale stability of quasi-2d premixed flames. Combust. Sci. Technol. 98 (1–3), 1123.
Kagan, L. & Sivashinsky, G. 2000 Flame propagation and extinction in large-scale vortical flows. Combust. Flame 120 (1), 222232.
Kagan, L., Sivashinsky, G. & Makhviladze, G. 1998 On flame extinction by a spatially periodic shear flow. Combust. Theor. Model. 2 (4), 399404.
Kortsarts, Y., Kliakhandeler, I., Shtilman, I. & Sivashinsky, G. 1998 Effects due to shear flow on the diffusive-thermal instability of premixed gas flames. Q. Appl. Maths 56 (3), 401412.
Landau, L. D. 1945 On the theory of slow combustion. Acta Physicochim. USSR 19, 7785.
Lipatnikov, A. N. & Chomiak, J. 2010 Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36 (1), 1102.
Markstein, G. H. 1964 Nonsteady Flame Propagation. Macmillan.
Matalon, M. 1983 On flame stretch. Combust. Sci. Technol. 31 (3–4), 169181.
Matalon, M. 2007 Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39, 163191.
Matalon, M. & Matkowsky, B. J. 1982 Flames as gas-dynamic discontinuities. J. Fluid Mech. 124, 239259.
Pelcé, P. & Clavin, P. 1982 Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219237.
Peters, N. 2010 Combustion Theory. RWTH Aachen University (CEFRC Summer School).
Searby, G. & Clavin, P. 1986 Weakly turbulent, wrinkled flames in premixed gases. Combust. Sci. Technol. 46 (3–6), 167193.
Sivashinsky, G. I. 1976 On a distorted flame front as a hydrodynamic discontinuity. Acta Astron. 3 (11), 889918.
Sivashinsky, G. I. 1977 Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations. Acta Astron. 4 (11), 11771206.
Sivashinsky, G. I. 1983 Instabilities, pattern formation, and turbulence in flames. Annu. Rev. Fluid Mech. 15 (1), 179199.
Sivashinsky, G. I. 1990 On the intrinsic dynamics of premixed flames. Phil. Trans. R. Soc. Lond. A 332 (1624), 135148.
Williams, F. A. 1985 Combustion Theory: The Fundamental Theory of Chemical Reacting Flow Systems. Benjamin Cummings.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Linear stability analysis of a premixed flame with transverse shear

  • Xiaoyi Lu (a1) and Carlos Pantano (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed