Skip to main content Accessibility help
×
Home

Linear instability analysis of convection in a laterally heated cylinder

  • Bo-Fu Wang (a1) (a2), Zhen-Hua Wan (a1), Zhi-Wei Guo (a3), Dong-Jun Ma (a4) and De-Jun Sun (a1)...

Abstract

The three-dimensional instabilities of axisymmetric flow are investigated in a laterally heated vertical cylinder by linear stability analysis. Heating is confined to a central zone on the sidewall of the cylinder, while other parts of the sidewall are insulated and both ends of the cylinder are cooled. The length of the heated zone equals the radius of the cylinder. For three different aspect ratios, $A= 1.92 $ , 2, 2.1 ( $A=\mathrm{height}$ /radius), the dependence of the critical Rayleigh number on the Prandtl number (from 0.02 to 6.7) has been studied in detail. For such a kind of laterally heated convection, some interesting stability results are obtained. A monotonous instability curve is obtained for $A= 1.92 $ , while the instability curves for $A= 2 $ and $A= 2.1 $ are non-monotonous and multivalued. In particular, an instability island has been found for $A=2$ . Moreover, mechanisms corresponding to different instability results are obtained when the Prandtl number changes. At small Prandtl number, the flow is oscillatory unstable, which is dominated by hydrodynamic instability. At intermediate Prandtl number, the interaction between buoyancy and shear in the base flow plays a more important role than pure hydrodynamic instability. At even higher Prandtl number, Rayleigh–Bénard instability becomes the dominant process and the flow loses stability through steady bifurcation.

Copyright

Corresponding author

Email addresses for correspondence: juice@mail.ustc.edu.cn, mdj@ustc.edu.cn, dsun@ustc.edu.cn

References

Hide All
Barwölff, G., König, F. & Seifert, G. 1997 Thermal buoyancy convection in vertical zone melting configurations. J. Appl. Math. Mech. 10, 757766.
Baumgartl, J., Budweiser, W., Mueller, G. & Neumann, G. 1989 Studies of buoyancy driven convection in a vertical cylinder with parabolic temperature profile. J. Cryst. Growth 97, 917.
Borońska, K. & Tuckerman, L. S. 2006 Standing and travelling waves in cylindrical Rayleigh–Bénard convection. J. Fluid Mech. 559, 279298.
Boussinesq, J. 1903 Théorie Analytique de la Chaleur, vol. 2. Gauthier–Villars.
Braunsfurth, M. G. & Mullin, T. 1996 An experimental study of oscillatory convection in liquid gallium. J. Fluid Mech. 327, 199219.
Buell, J. C. & Catton, I. 1983 The effect of wall conduction on the stability of a fluid in a right circular cylinder heated from below. Trans. ASME J. Heat Transfer 105, 255260.
Charlson, G. S. & Sani, R. L. 1970 Thermoconvective instability in a bounded cylindrical fluid layer. Intl J. Heat Mass Transfer 13, 14791496.
Charlson, G. S. & Sani, R. L. 1971 On thermoconvective instability in a bounded cylindrical fluid layer. Intl J. Heat Mass Transfer 14, 21572160.
Chen, J. G., Chen, H. X., Zhang, G. H. & Fu, S. 2006 Stability of flow between rotating cylinders with axial buoyancy effect. Sci. China Phys. Mech. Astron. 49, 564575.
Daniels, K. E., Brausch, O., Pesch, W. & Bodenschatz, E. 2008 Competition and bistability of ordered undulations and undulation chaos in inclined layer convection. J. Fluid Mech. 597, 261282.
Daniels, K. E., Plapp, B. B. & Bodenschatz, E. 2003 Pattern formation in inclined layer convection. Phys. Rev. Lett. 84, 53205323.
Erenburg, V., Gelfgat, A. Yu., Kit, E., Bar-Yoseph, P. Z. & Solan, A. 2003 Multiple states, stability and bifurcations of natural convection in a rectangular cavity with partially heated vertical walls. J. Fluid Mech. 492, 6389.
Gelfgat, A. Yu., Bar-Yoseph, P. Z. & Solan, A. 2000 Axisymmetry breaking instabilities of natural convection in a vertical Bridgman growth configuration. J. Cryst. Growth 220, 316325.
Gelfgat, A. Yu., Bar-Yoseph, P. Z. & Yarin, A. L. 1997 On oscillatory instability of convective flows at low Prandtl number. Trans. ASME J. Fluids Engng. 119, 823830.
Gelfgat, A. Yu., Bar-Yoseph, P. Z. & Yarin, A. L. 1999 Stability of multiple steady states of convection in laterally heated cavities. J. Fluid Mech. 388, 315334.
Gemeny, L. E., Martin Witkowski, L. & Walker, J. S. 2007 Buoyant instability in a laterally heated vertical cylinder. Intl J. Heat Mass Transfer 50, 10101017.
Hardin, G. R., Sani, R. L., Henry, D. & Roux, B. 1990 Buoyancy-driven instability in a vertical cylinder: Binary fluids with Soret effect. Part 1. General-theory and stationary stability results. Intl J. Numer. Meth. Fluids 10 (1), 79117.
Hurle, D. T. J. 1966 Temperature oscillations in molten metals and their relationship to growth striae in melt-grown crystals. Phil. Mag. 13, 305310.
Jaluria, Y. 2001 Fluid flow phenomena in materials processing: the 2000 Freeman scholar lecture. Trans. ASME J. Fluids Engng. 123, 173210.
Knoll, D. A. & Keyes, D. E. 2004 Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357397.
Lehoucq, R. B., Sorensen, D. C. & Yang, C.(Eds.) 1998 ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM.
Ma, D. J., Henry, D. & BenHadid, H. 2005 Three-dimensional numerical study of natural convection in vertical cylinders partially heated from the side. Phys. Fluids 17, 124101.
Ma, D. J., Sun, D. J. & Yin, X. Y. 2006 Multiplicity of steady states in cylindrical Rayleigh–Bénard convection. Phys. Rev. E 74, 037302.
Meseguer, A. & Marques, F. 2000 On the competition between centrifugal and shear instability in spiral Couette flow. J. Fluid Mech. 402, 3356.
Meseguer, A. & Marques, F. 2002 On the competition between centrifugal and shear instability in spiral Poiseuille flow. J. Fluid Mech. 455, 129148.
Müller, G. 1993 Convective instabilities in melt growth configurations. J. Cryst. Growth 128, 2636.
Müller, G. & Ostrogorsky, A. 1994 Convection in melt growth. In Handbook of Crystal Growth (ed. Hurle, D. T. J.), vol. 2, pp. 711781. North-Holland.
Neumann, G. 1990 Three-dimensional numerical simulation of buoyancy-driven convection in vertical cylinders heated from below. J. Fluid Mech. 214, 559578.
Oberbeck, A. 1879 Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. Chem. 7, 271292.
Peng, J. & Zhu, K. Q. 2004 Linear stability of Bingham fluids in spiral Couette flow. J. Fluid Mech. 512, 2145.
Rubinov, A., Erenburg, V., Gelfgat, A. Yu., Kit, E., Bar-Yoseph, P. Z. & Solan, A. 2004 Three-dimensional instabilities of natural convection flow in a vertical cylinder with partially heated sidewall. Trans. ASME J. Heat Transfer 126, 586599.
Selver, R., Kamotani, Y. & Ostrach, S. 1998 Natural convection of a liquid metal in vertical cylinders heated locally from the side. Trans. ASME J. Heat Transfer 120, 108114.
Stork, K. & Müller, U. 1975 Convection in boxes: an experimental investigation in vertical cylinders and annuli. J. Fluid Mech. 71, 231240.
Touihri, R., Ben Hadid, H. & Henry, D. 1999 On the onset of convective instabilities in cylindrical cavities heated from below. I. Pure thermal case. Phys. Fluids 11, 20782088.
Tuckerman, L. S. & Barkley, D. 2000 Bifurcation analysis for time-steppers. In Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems (ed. Doedel, E. & Tuckerman, L. S.), vol. 119, pp. 453466. Springer.
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for the three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402414.
Wang, B. F., Ma, D. J., Chen, C. & Sun, D. J. 2012 Linear stability analysis of cylindrical Rayleigh–Bénard convection. J. Fluid Mech. 38, 2739.
Wanschura, M., Kuhlmann, H. C. & Rath, H. J. 1996 Three-dimensional instability of axisymmetric buoyant convection in cylinders heated from below. J. Fluid Mech. 326, 399415.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed