Skip to main content Accessibility help

Linear and weakly nonlinear analysis of Rayleigh–Bénard convection of perfect gas with non-Oberbeck–Boussinesq effects

  • Shuang Liu (a1), Shu-Ning Xia (a2), Rui Yan (a1), Zhen-Hua Wan (a1) and De-Jun Sun (a1)...


The influences of non-Oberbeck–Boussinesq (NOB) effects on flow instabilities and bifurcation characteristics of Rayleigh–Bénard convection are examined. The working fluid is air with reference Prandtl number $Pr=0.71$ and contained in two-dimensional rigid cavities of finite aspect ratios. The fluid flow is governed by the low-Mach-number equations, accounting for the NOB effects due to large temperature difference involving flow compressibility and variations of fluid viscosity and thermal conductivity with temperature. The intensity of NOB effects is measured by the dimensionless temperature differential $\unicode[STIX]{x1D716}$ . Linear stability analysis of the thermal conduction state is performed. An $\unicode[STIX]{x1D716}^{2}$ scaling of the leading-order corrections of critical Rayleigh number $Ra_{cr}$ and disturbance growth rate $\unicode[STIX]{x1D70E}$ due to NOB effects is identified, which is a consequence of an intrinsic symmetry of the system. The influences of weak NOB effects on flow instabilities are further studied by perturbation expansion of linear stability equations with regard to $\unicode[STIX]{x1D716}$ , and then the influence of aspect ratio $A$ is investigated in detail. NOB effects are found to enhance (weaken) flow stability in large (narrow) cavities. Detailed contributions of compressibility, viscosity and buoyancy actions on disturbance kinetic energy growth are identified quantitatively by energy analysis. Besides, a weakly nonlinear theory is developed based on centre-manifold reduction to investigate the NOB influences on bifurcation characteristics near convection onset, and amplitude equations are constructed for both codimension-one and -two cases. Rich bifurcation regimes are observed based on amplitude equations and also confirmed by direct numerical simulation. Weakly nonlinear analysis is useful for organizing and understanding these simulation results.


Corresponding author

Email address for correspondence:


Hide All
Ahlers, G. 1980 Effect of departures from the Oberbeck–Boussinesq approximation on the heat transport of horizontal convecting fluid layers. J. Fluid Mech. 98, 137148.
Ahlers, G., Brown, E., Araujo, F. F., Funfschilling, D., Grossmann, S. & Lohse, D. 2006 Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection. J. Fluid Mech. 569, 409445.
Ahlers, G., Dressel, B., Oh, J. & Pesch, W. 2010 Strong non-Boussinesq effects near the onset of convection in a fluid near its critical point. J. Fluid Mech. 642, 1548.
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
Bodenschatz, E., de Bruyn, J. R., Ahlers, G. & Cannell, D. S. 1991 Transitions between patterns in thermal convection. Phys. Rev. Lett. 67, 30783081.
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32, 709778.
Boussinesq, J. 1903 Théorie Analytique de la Chaleur, vol. 2. Gauthier-Villars.
Busse, F. H. 1967 The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 30, 625649.
Carini, M., Auteri, F. & Giannetti, F. 2015 Centre-manifold reduction of bifurcating flows. J. Fluid Mech. 767, 109145.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.
Chenoweth, D. R. & Paolucci, S. 1985 Gas flow in vertical slots with large horizontal temperature differences. Phys. Fluids 28, 23652374.
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 125.
Ciliberto, S., Coullet, P., Lega, J., Pampaloni, E. & Perez-Garcia, C. 1990 Defects in roll-hexagon competition. Phys. Rev. Lett. 65, 23702373.
Ciliberto, S., Pampaloni, E. & Perez-Garcia, C. 1988 Competition between different symmetries in convective patterns. Phys. Rev. Lett. 61, 11981201.
Coullet, P. H. & Spiegel, E. A. 1983 Amplitude equations for systems with competing instabilities. SIAM J. Appl. Maths 43, 776821.
Crawford, J. D. & Knobloch, E. 1991 Symmetry and symmetry-breaking bifurcations in fluid dynamics. Annu. Rev. Fluid Mech. 23, 341387.
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.
Fröhlich, J., Laure, P. & Peyret, R. 1992 Large departures from Boussinesq approximation in the Rayleigh–Bénard problem. Phys. Fluids 4, 13551372.
Gao, P. & Lu, X. Y. 2006 Instability of channel flow with oscillatory wall suction/blowing. Phys. Fluids 18, 034102.
Golubitsky, M., Stewart, I. N. & Schaeffer, D. G. 1988 Singularities and Groups in Bifurcation Theory, vol. 2. Springer.
Gray, D. D. & Giorgini, A. 1976 The validity of the Boussinesq approximation for liquids and gases. Intl J. Heat Mass Transfer 19, 545551.
Horn, S. & Shishkina, O. 2014 Rotating non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water. Phys. Fluids 26 (5), 055111.
Horn, S., Shishkina, O. & Wagner, C. 2013 On non-Oberbeck–Boussinesq effects in three-dimensional Rayleigh–Bénard convection in glycerol. J. Fluid Mech. 724, 175202.
Hoyle, R. 2006 Pattern Formation: An Introduction to Methods. Cambridge University Press.
Ma, D. J., Henry, D. & Hadid, H. B. 2005 Three-dimensional numerical study of natural convection in vertical cylinders partially heated from the side. Phys. Fluids 17, 124101.
Metzener, P. 1986 The effect of rigid sidewalls on nonlinear two-dimensional Bénard convection. Phys. Fluids 29, 13731377.
Mizushima, J. 1995 Onset of the thermal convection in a finite two-dimensional box. J. Phys. Soc. Japan 64, 24202432.
Normand, C., Pomeau, Y. & Velarde, M. G. 1977 Convective instability: a physicist’s approach. Rev. Mod. Phys. 49, 581624.
Oberbeck, A. 1879 Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. 243, 271292.
Pampaloni, E., Perez-Garcia, C., Albavetti, L. & Ciliberto, S. 1992 Transition from hexagons to rolls in convection in fluids under non-Boussinesq conditions. J. Fluid Mech. 234, 393416.
Paolucci, S.1982 Filtering of sound from the Navier–Stokes equations. Tech. Rep. Sandia National Laboratories, Livermore.
Paolucci, S. & Chenoweth, D. R. 1987 Departures from the Boussinesq approximation in laminar Bénard convection. Phys. Fluids 30, 15611564.
Robinson, F. & Chan, K. 2004 Non-Boussinesq simulations of Rayleigh–Bénard convection in a perfect gas. Phys. Fluids 16, 13211333.
Sugiyama, K., Calzavarini, E., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck–Boussinesq effects in two-dimensional Rayleigh–Bénard convection in glycerol. Europhys. Lett. 80 (3), 34002.
Suslov, S. A. & Paolucci, S. 1995 Stability of mixed-convection flow in a tall vertical channel under non-Boussinesq conditions. J. Fluid Mech. 302, 91115.
Suslov, S. A. & Paolucci, S. 1997 Nonlinear analysis of convection flow in a tall vertical enclosure under non-Boussinesq conditions. J. Fluid Mech. 344, 141.
Suslov, S. A. & Paolucci, S. 1999a Nonlinear stability of mixed convection flow under non-Boussinesq conditions. Part 1. Analysis and bifurcations. J. Fluid Mech. 398, 6185.
Suslov, S. A. & Paolucci, S. 1999b Nonlinear stability of mixed convection flow under non-Boussinesq conditions. Part 2. Mean flow characteristics. J. Fluid Mech. 398, 87108.
Trefethen, L. N. 2000 Spectral Methods in MATLAB. SIAM.
Wang, B. F., Ma, D. J., Chen, C. & Sun, D. J. 2012 Linear stability analysis of cylindrical Rayleigh–Bénard convection. J. Fluid Mech. 711, 2739.
Wang, B. F., Wan, Z. H., Guo, Z. W., Ma, D. J. & Sun, D. J. 2014 Linear instability analysis of convection in a laterally heated cylinder. J. Fluid Mech. 747, 447459.
Wang, S. X. 2008 A novel method for analyzing the global stability of inviscid columnar swirling flow in a finite pipe. Phys. Fluids 20, 074101.
Xia, S. N., Wan, Z. H., Liu, S., Wang, Q. & Sun, D. J. 2016 Flow reversals in Rayleigh–Bénard convection with non-Oberbeck–Boussinesq effects. J. Fluid Mech. 798, 628642.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Linear and weakly nonlinear analysis of Rayleigh–Bénard convection of perfect gas with non-Oberbeck–Boussinesq effects

  • Shuang Liu (a1), Shu-Ning Xia (a2), Rui Yan (a1), Zhen-Hua Wan (a1) and De-Jun Sun (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.