Skip to main content Accessibility help

The lid-driven right-angled isosceles triangular cavity flow

  • B. An (a1), J. M. Bergada (a1) and F. Mellibovsky (a2)


We employ lattice Boltzmann simulation to numerically investigate the two-dimensional incompressible flow inside a right-angled isosceles triangular enclosure driven by the tangential motion of its hypotenuse. While the base flow, directly evolved from creeping flow at vanishing Reynolds number, remains stationary and stable for flow regimes beyond $Re\gtrsim 13\,400$ , chaotic motion is nevertheless observed from as low as $Re\simeq 10\,600$ . Chaotic dynamics is shown to arise from the destabilisation, following a variant of the classic Ruelle–Takens route, of a secondary solution branch that emerges at a relatively low $Re\simeq 4908$ and appears to bear no connection to the base state. We analyse the bifurcation sequence that takes the flow from steady to periodic and then quasi-periodic and show that the invariant torus is finally destroyed in a period-doubling cascade of a phase-locked limit cycle. As a result, a strange attractor arises that induces chaotic dynamics.


Corresponding author

Email address for correspondence:


Hide All
Abouhamza, A. & Pierre, R. 2003 A neutral stability curve for incompressible flows in a rectangular driven cavity. Math. Comput. Model. 38 (1–2), 141157.
Afraimovich, V. S. & Shilnikov, L. P. 1983 On invariant two-dimensional tori, their breakdown and stochasticity. In Methods of Qualitative Theory of Differential Equations, pp. 326. Gorki University Press.
Ahmed, M. & Kuhlmann, H. C. 2012 Flow instability in triangular lid-driven cavities with wall motion away from a rectangular corner. Fluid Dyn. Res. 44 (2), 025501.
Aidun, C. K., Triantafillopoulos, N. G. & Benson, J. D. 1991 Global stability of a lid-driven cavity with throughflow – flow visualization studies. Phys. Fluids A 3 (9), 20812091.
Albensoeder, S., Kuhlmann, H. C. & Rath, H. J. 2001 Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem. Phys. Fluids 13 (1), 121135.
Anischenko, V. S., Safonova, M. A. & Chua, L. O. 1993 Confirmation of the Afraimovich-Shilnikov torus-breakdown theorem via a torus circuit. IEEE Trans. Cir. Sys. 40 (11), 792800.
Auteri, F., Parolini, N. & Quartapelle, L. 2002 Numerical investigation on the stability of singular driven cavity flow. J. Comput. Phys. 183 (1), 125.
Auteri, F., Quartapelle, L. & Vigevano, L. 2002 Accurate omega-psi spectral solution of the singular driven cavity problem. J. Comput. Phys. 180 (2), 597615.
Batchelor, G. K. 1956 On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1 (2), 177190.
Batoul, A., Khallouf, H. & Labrosse, G. 1994 A direct spectral solver of the 2D/3D unsteady Stokes problem – application to the 2D square driven cavity. C. R. Acad. Sci. II 319 (12, 1), 14551461.
Benson, J. D. & Aidun, C. K. 1992 Transition to unsteady nonperiodic state in a through-flow lid-driven cavity. Phys. Fluids A 4 (10), 23162319.
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (3), 511525.
Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.
Boppana, V. B. L. & Gajjar, J. S. B. 2010 Global flow instability in a lid-driven cavity. Intl J. Numer. Meth. Fluids 62 (8), 827853.
Botella, O. 1997 On the solution of the Navier–Stokes equations using Chebyshev projection schemes with third-order accuracy in time. Comput. Fluids 26 (2), 107116.
Botella, O. & Peyret, R. 1998 Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27 (4), 421433.
Botella, O. & Peyret, R. 2001 Computing singular solutions of the Navier–Stokes equations with the Chebyshev-collocation method. Intl J. Numer. Meth. Fluids 36 (2), 125163.
Bruneau, C. H. & Saad, M. 2006 The 2D lid-driven cavity problem revisited. Comput. Fluids 35 (3), 326348.
Burggraf, O. R. 1966 Analytical and numerical studies of structure of steady separated flows. J. Fluid Mech. 24 (1), 113151.
Cazemier, W., Verstappen, R. W. C. P. & Veldman, A. E. P. 1998 Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10 (7), 16851699.
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.
Cheng, M. & Hung, K. C. 2006 Vortex structure of steady flow in a rectangular cavity. Comput. Fluids 35 (10), 10461062.
Cornubert, R., d’Humières, D. & Levermore, D. 1991 A Knudsen layer theory for lattice gases. Physica D 47 (1-2), 241259.
d’Humières, D. 1992 Generalized lattice-Boltzmann equations. In Rarefied Gas Dynamics: Theory and Simulations (ed. Weaver, D. P. & Shizgal, B. D.), Progress in Astronautics and Aeronautics, vol. 159, pp. 450458. American Institute of Aeronautics and Astronautics.
Ding, Y. & Kawahara, M. 1999 Three-dimensional linear stability analysis of incompressible viscous flows using the finite element method. Intl J. Numer. Meth. Fluids 31 (2), 451479.
Du, R., Shi, B. & Chen, X. 2006 Multi-relaxation-time lattice Boltzmann model for incompressible flow. Phys. Lett. A 359 (6), 564572.
Erturk, E. & Gokcol, C. 2006 Fourth-order compact formulation of Navier–Stokes equations and driven cavity flow at high Reynolds numbers. Intl J. Numer. Meth. Fluids 50 (4), 421436.
Erturk, E. & Gokcol, O. 2007 Fine grid numerical solutions of triangular cavity flow. Eur. Phys. J. 38 (1), 97105.
Fortin, A., Jardak, M., Gervais, J. J. & Pierre, R. 1997 Localization of Hopf bifurcations in fluid flow problems. Intl J. Numer. Meth. Fluids 24 (11), 11851210.
Gaskell, P. H., Thompson, H. M. & Savage, M. D. 1999 A finite element analysis of steady viscous flow in triangular cavities. Proc. Inst. Mech. Engrs 213 (3), 263276.
Ghia, U., Ghia, K. N. & Shin, C. T. 1982 High-Re solutions for incompressible-flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48 (3), 387411.
Gonzalez, L. M., Ahmed, M., Kuehnen, J., Kuhlmann, H. C. & Theofilis, V. 2011 Three-dimensional flow instability in a lid-driven isosceles triangular cavity. J. Fluid Mech. 675, 369396.
Goodrich, J. W., Gustafson, K. & Halasi, K. 1990 Hopf-bifurcation in the driven cavity. J. Comput. Phys. 90 (1), 219261.
Gresho, P. M. & Chan, S. T. 1990 On the theory of semi-implicit projection methods for viscous incompressible-flow and its implementation via a finite-element method that also introduces a nearly consistent mass matrix. 2. Implementation. Intl J. Numer. Meth. Fluids 11 (5), 621659.
Guo, Z. L., Shi, B. C. & Wang, N. C. 2000 Lattice BGK model for incompressible Navier–Stokes equation. J. Comput. Phys. 165 (1), 288306.
Guo, Z. L., Zheng, C. G. & Shi, B. C. 2002 An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14 (6), 20072010.
Guo, Z. L., Zheng, C. G. & Shi, B. C. 2002 Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11 (4), 366374.
Gupta, M. M. & Kalita, J. C. 2005 A new paradigm for solving Navier–Stokes equations: streamfunction-velocity formulation. J. Comput. Phys. 207 (1), 5268.
Gupta, M. M., Manohar, R. P. & Noble, B. 1981 Nature of viscous flows near sharp corners. Comput. Fluids 9 (4), 379388.
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305 (5690), 15941598.
Hou, S. L., Zou, Q., Chen, S. Y., Doolen, G. & Cogley, A. C. 1995 Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 118 (2), 329347.
Jagannathan, A., Mohan, R. & Dhanak, M. 2014 A spectral method for the triangular cavity flow. Comput. Fluids 95, 4048.
Jimenez, J. 1990 Transition to turbulence in 2-dimensional Poiseuille flow. J. Fluid Mech. 218, 265297.
Jyotsna, R. & Vanka, S. P. 1995 Multigrid calculation of steady, viscous-flow in a triangular cavity. J. Comput. Phys. 122 (1), 107117.
Kalita, J. C. & Gogoi, B. B. 2016 A biharmonic approach for the global stability analysis of 2D incompressible viscous flows. Appl. Math. Model. 40 (15–16), 68316849.
Kawaguti, M. 1961 Numerical solution of Navier–Stokes equations for flow in a 2-dimensional cavity. J. Phys. Soc. Japan 16 (11), 2307.
Khorasanizade, S. & Sousa, J. M. M. 2014 A detailed study of lid-driven cavity flow at moderate Reynolds numbers using incompressible SPH. Intl J. Numer. Meth. Fluids 76 (10), 653668.
Kohno, H. & Bathe, K. J. 2006 A flow-condition-based interpolation finite element procedure for triangular grids. Intl J. Numer. Meth. Fluids 51 (6), 673699.
Koseff, J. R. & Street, R. L. 1984 The lid-driven cavity flow – a synthesis of qualitative and quantitative observations. Trans. ASME J. Fluids Engng 106 (4), 390398.
Krupa, M. 1990 Bifurcations of relative equilibria. SIAM J. Math. Anal. 21 (6), 14531486.
Kuhlmann, H.C. & Romanò, F. 2019 The lid-driven cavity. In Computational modelling of bifurcations and instabilities in fluid dynamics (ed. Gelfgat, A.), chap. 8, pp. 233309. Springer.
Lallemand, P. & Luo, L. S. 2000 Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61 (6, A), 65466562.
Li, M. & Tang, T. 1996 Steady viscous flow in a triangular cavity by efficient numerical techniques. Comput. Maths Applics. 31 (10), 5565.
Lin, L. S., Chang, H. W. & Lin, C. A. 2013 Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU. Comput. Fluids 80 (SI), 381387.
Lopez, J. M., Welfert, B. D., Wu, K. & Yalim, J. 2017 Transition to complex dynamics in the cubic lid-driven cavity. Phys. Rev. Fluids 2 (7), 074401.
de Lozar, A., Mellibovsky, F., Avila, M. & Hof, B. 2012 Edge state in pipe flow experiments. Phys. Rev. Lett. 108 (21), 214502.
Marchi, C. H., Suero, R. & Araki, L. K. 2009 The lid-driven square cavity flow: numerical solution with a 1024 × 1024 grid. J. Braz. Soc. Mech. Sci. Engng 31 (3), 186198.
McQuain, W. D., Ribbens, C. J., Wang, C. Y. & Watson, L. T. 1994 Steady viscous-flow in a trapezoidal cavity. Comput. Fluids 23 (4), 613626.
Mellibovsky, F. & Meseguer, A. 2015 A mechanism for streamwise localisation of nonlinear waves in shear flows. J. Fluid Mech. 779, R1.
Moffatt, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (1), 118.
Molenaar, D., Clercx, H. J. H. & van Heijst, G. J. F. 2005 Transition to chaos in a confined two-dimensional fluid flow. Phys. Rev. Lett. 95 (10), 104503.
Murdock, J. R., Ickes, J. C. & Yang, S. L. 2017 Transition flow with an incompressible lattice Boltzmann method. Adv. Appl. Maths Mech. 9 (5), 12711288.
Newhouse, S., Ruelle, D. & Takens, F. 1978 Occurrence of strange Axiom A attractors near quasi periodic flows on T m , m ≧ 3. Commun. Math. Phys. 64 (1), 3540.
Non, E., Pierre, R. & Gervais, J. J. 2006 Linear stability of the three-dimensional lid-driven cavity. Phys. Fluids 18 (8), 084103.
Nuriev, A. N., Egorov, A. G. & Zaitseva, O. N. 2016 Bifurcation analysis of steady-state flows in the lid-driven cavity. Fluid Dynam. Res. 48 (6), 6th International Symposium on Instability and Bifurcations in Fluid Dynamics (BIFD), ESPCI, Paris, France, Jul 15–17, 2015.
Ozalp, C., Pinarbasi, A. & Sahin, B. 2010 Experimental measurement of flow past cavities of different shapes. Exp. Therm. Fluid Sci. 34 (5), 505515.
Pan, F. & Acrivos, A. 1967 Steady flows in rectangular cavities. J. Fluid Mech. 28 (4), 643.
Paramane, S. B. & Sharma, A. 2008 Consistent implementation and comparison of FOU, CD, SOU, and QUICK convection schemes on square, skew, trapezoidal, and triangular lid-driven cavity flow. Numer. Heat Transfer 54 (1), 84102.
Pasquim, B. M. & Mariani, V. C. 2008 Solutions for incompressible viscous flow in a triangular cavity using cartesian grid method. Comput. Model. Engng Sci. 35 (2), 113132.
Peng, Y. F., Shiau, Y. H. & Hwang, R. R. 2003 Transition in a 2-D lid-driven cavity flow. Comput. Fluids 32 (3), 337352.
Poliashenko, M. & Aidun, C. K. 1995 A direct method for computation of simple bifurcations. J. Comput. Phys. 121 (2), 246260.
Prandtl, L. 1904 über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verhandl III, Intern. Math. Kongr. Heidelberg, Auch: Gesammelte Abhandlungen, pp. 484491.
Procaccia, I. 1988 Universal properties of dynamically complex-systems – the organization of chaos. Nature 333 (6174), 618623.
Qian, Y. H., D’Humières, D. & Lallemand, P. 1992 Lattice BGK models for Navier–Stokes equation. Eur. Phys. Lett. 17 (6BIS), 479484.
Ribbens, C. J., Watson, L. T. & Wang, C. Y. 1994 Steady viscous-flow in a triangular cavity. J. Comput. Phys. 112 (1), 173181.
Romanò, F. & Kuhlmann, H. C. 2017 Smoothed-profile method for momentum and heat transfer in particulate flows. Intl J. Numer. Meth. Fluids 83 (6), 485512.
Ruelle, D. & Takens, F. 1971 On the nature of turbulence. Commun. Math. Phys. 20 (3), 167192.
Sahin, M. & Owens, R. G. 2003 A novel fully implicit finite volume method applied to the lid-driven cavity problem. Part I. High Reynolds number flow calculations. Intl J. Numer. Meth. Fluids 42 (1), 5777.
Sahin, M. & Owens, R. G. 2003 A novel fully-implicit finite volume method applied to the lid-driven cavity problem. Part II. Linear stability analysis. Intl J. Numer. Meth. Fluids 42 (1), 7988.
Schreiber, R. & Keller, H. B. 1983 Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49 (2), 310333.
Shankar, P. N. & Deshpande, M. D. 2000 Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32, 93136.
Shen, J. 1991 Hopf-bifurcation of the unsteady regularized driven cavity flow. J. Comput. Phys. 95 (1), 228245.
Sidik, N. A. C. & Munir, F. A. 2012 Mesoscale numerical prediction of fluid flow in a shear driven cavity. Arab. J. Sci. Engng 37 (6), 17231735.
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96 (17), 174101.
Smith, J. A. & Largier, J. L. 1995 Observations of nearshore circulation – rip currents. J. Geophys. Res.-Oceans 100 (C6), 1096710975.
Theofilis, V., Duck, P. W. & Owen, J. 2004 Viscous linear stability analysis of rectangular duct and cavity flows. J. Fluid Mech. 505, 249286.
Tiesinga, G., Wubs, F. W. & Veldman, A. E. P. 2002 Bifurcation analysis of incompressible flow in a driven cavity by the Newton–Picard method. J. Comput. Appl. Maths 140 (1–2 SI), 751772; 9th International Congress on Computational and Applied Mathematics, Univ. Leuven, Leuven, Belgium, Jul 17–21, 2000.
Vanka, S. P. 1986 Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J. Comput. Phys. 65 (1), 138158.
Wells, M. G. & van Heijst, G. J. F. 2003 A model of tidal flushing of an estuary by dipole formation. Dyn. Atmos. Oceans 37 (3), 223244.
Yu, D. Z., Mei, R. W., Luo, L. S. & Shyy, W. 2003 Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39 (5), 329367.
Zhang, T., Shi, B. & Chai, Z. 2010 Lattice Boltzmann simulation of lid-driven flow in trapezoidal cavities. Comput. Fluids 39 (10), 19771989.
Zhuo, C., Zhong, C. & Cao, J. 2013 Filter-matrix lattice Boltzmann simulation of lid-driven deep-cavity flows. Part II. Flow bifurcation. Comput. Maths Applics. 65 (12), 18831893.
Ziegler, D. P. 1993 Boundary-conditions for lattice Boltzmann simulations. J. Stat. Phys. 71 (5–6), 11711177.
Zou, Q. S. & He, X. Y. 1997 On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9 (6), 15911598.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO
Type Description Title

An et al. supplementary movie 1
Re=8500. B-type periodic solution

 Video (81 KB)
81 KB

An et al. supplementary movie 2
Re=14000. A-type periodic solution

 Video (14 KB)
14 KB

An et al. supplementary movie 3
Re=9000. B-type quasiperiodic solution

 Video (788 KB)
788 KB

An et al. supplementary movie 4
Re=10500. B-type phase-locked quasiperiodic solution

 Video (1.9 MB)
1.9 MB

An et al. supplementary movie 5
Re=11000. B-type chaotic solution

 Video (1.3 MB)
1.3 MB

An et al. supplementary movie 6
Re=12000. Chaotic solution

 Video (2.9 MB)
2.9 MB

The lid-driven right-angled isosceles triangular cavity flow

  • B. An (a1), J. M. Bergada (a1) and F. Mellibovsky (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.