Skip to main content Accessibility help

Lattice Boltzmann simulations of low-Reynolds-number flows past fluidized spheres: effect of inhomogeneities on the drag force

  • Gregory J. Rubinstein (a1), Ali Ozel (a1), Xiaolong Yin (a2), J. J. Derksen (a3) and Sankaran Sundaresan (a1)...


The formation of inhomogeneities within fluidized beds, both in terms of the particle configurations and flow structures, have a pronounced effect on the interaction force between the fluid and particles. While recent numerical studies have begun to probe the effects of inhomogeneities on the drag force at the particle scale, the applicability of prior microscale constitutive drag relations is still limited to random, homogeneous distributions of particles. Since an accurate model for the drag force is needed to predict the fluidization behaviour, the current study utilizes the lessons of prior inhomogeneity studies in order to derive a robust drag relation that is both able to account for the effect of inhomogeneities and applicable as a constitutive closure to larger-scale fluidization simulations. Using fully resolved lattice Boltzmann simulations of systems composed of fluid and monodisperse spherical particles in the low-Reynolds-number (Re) regime, the fluid–particle drag force, normalized by the ideal Stokes drag force, is found to significantly decrease, over a range of length scales, as the extent of inhomogeneities increases. The extent of inhomogeneities is found to most effectively be quantified through one of two subgrid-scale quantities: the scalar variance of the particle volume fraction or the drift flux, which is the correlation between the particle volume fraction and slip velocity. Scale-similar models are developed to estimate these two subgrid measures over a wide range of system properties. Two new drag constitutive models are proposed that are not only functions of the particle volume fraction and the Stokes number ( $St$ ), but also dependent on one of these subgrid measures for the extent of inhomogeneities. Based on the observed, appreciable effect of inhomogeneities on drag, these new low-Re drag models represent a significant advancement over prior constitutive relations.


Corresponding author

Email address for correspondence:


Hide All
Agrawal, K., Loezos, P. N., Syamlal, M. & Sundaresan, S. 2001 The role of meso-scale structures in rapid gas–solid flows. J. Fluid Mech. 445, 151185.
Beetstra, R., van der Hoef, M. A. & Kuipers, J. A. M. 2007 Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J. 52 (2), 489501.
ten Cate, A., Nieuwstad, C. H., Derksen, J. J. & van den Akker, H. E. A. 2002 Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 14 (11), 40124025.
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.
Cloete, S., Johansen, S. T. & Amini, S. 2015 Grid independence behaviour of fluidized bed reactor simulations using the Two Fluid Model: effect of particle size. Powder Technol. 269, 153165.
Derksen, J. & Van den Akker, H. E. A. 1999 Large-eddy simulations on the flow driven by a Rushton turbine. AIChE J. 45, 209221.
Derksen, J. J. & Sundaresan, S. 2007 Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds. J. Fluid Mech. 587, 303336.
Eggels, J. G. M. & Somers, J. A. 1995 Numerical simulation of free convective flow using the lattice-Boltzmann scheme. Intl J. Heat Fluid Flow 16 (5), 357364.
Fox, R. O. 2014 On multiphase turbulence models for collisional fluid–particle flows. J. Fluid Mech. 742, 368424.
Fullmer, W. D. & Hrenya, C. M. 2016 Quantitative assessment of fine-grid kinetic-theory-based predictions of mean-slip in unbounded fluidization. AIChE J. 62 (1), 1117.
Garside, J. & Al-Dibouni, M. R. 1977 Velocity-voidage relationships for fluidization and sedimentation in solid–liquid systems. Ind. Eng. Chem. Process Des. Dev. 16, 206214.
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105 (2), 354366.
Hill, R. J., Koch, D. L. & Ladd, A. J. C. 2001 The first effects of fluid inertia on flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 213241.
van der Hoef, M. A., Beetstra, R. & Kuipers, J. A. M. 2005 Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force. J. Fluid Mech. 528, 233254.
Hong, K., Chen, S., Wang, W. & Li, J. 2016 Fine-grid two-fluid modeling of fluidization of Geldart A particles. Powder Technol. 296, 216.
Igci, Y., Andrews, A. T. IV, Sundaresan, S., Pannala, S. & O’Brien, T. 2008 Filtered two-fluid models for fluidized gas-particle suspensions. AIChE J. 54 (6), 14311448.
Igci, Y. & Sundaresan, S. 2011 Constitutive models for filtered two-fluid models of fluidized gas-particle flows. Ind. Engng Chem. Res. 50, 1319013201.
Jiménez, C., Ducros, F., Cuenot, B. & Bédat, B. 2001 Subgrid scale variance and dissipation of a scalar field in large eddy simulations. Phys. Fluids 13 (6), 17481754.
Kim, S. & Karilla, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.
Kriebitzsch, S. H. L., van der Hoef, M. A. & Kuipers, J. A. M. 2013 Drag force in discrete particle models – continuum scale or single particle scale? AIChE J. 59 (1), 316324.
Ladd, A. J. C. 1994 Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.
Li, T., Gel, A., Pannala, S., Shahnam, M. & Syamlal, M. 2014 Reprint of ‘CFD simulations of circulating fluidized bed risers, part I: Grid study’. Powder Technol. 265, 212.
Li, T., Wang, L., Rogers, W., Zhou, G. & Ge, W. 2017 An approach for drag correction based on the local heterogeneity for gas–solid flows. AIChE J 63 (4), 12031212.
Liu, X., Zhu, C., Geng, S., Yao, M., Zhan, J. & Xu, G. 2015 Two-fluid modeling of Geldart A particles in gas–solid micro-fluidized beds. Particuology 21, 118127.
Lu, B., Wang, W. & Li, J. 2009 Searching for a mesh-independent sub-grid model for CFD simulation of gas–solid riser flows. Chem. Engng Sci. 64 (15), 34373447.
Nguyen, N.-Q. & Ladd, A. J. C. 2002 Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. E 66, 046708.
Ozel, A., Fede, P. & Simonin, O. 2013 Development of filtered Euler-Euler two-phase model for circulating fluidised bed: High resolution simulation, formulation and a priori analyses. Intl J. Multiphase Flow 55, 4363.
Ozel, A., Parmentier, J. F., Simonin, O. & Fede, P. 2010 A priori test of effective drag modeling for filtered two-fluid model simulation of circulating and dense gas–solid fluidized beds. In Proceedings of the 7th International Conference on Multiphase Flow (ICMF 2010). University of Florida.
Parmentier, J.-F., Simonin, O. & Delsart, O. 2012 A functional subgrid drift velocity model for filtered drag prediction in dense fluidized bed. AIChE J. 58 (4), 10841098.
Pepiot, P. & Desjardins, O. 2012 Numerical analysis of the dynamics of two- and three-dimensional fluidized bed reactors using an Euler–Lagrange approach. Powder Technol. 220, 104121.
Qian, Y. H., D’Humieres, D. & Lallemand, P. 1992 Lattice BGK for the Navier–Stokes equations. Europhys. Lett. 17, 479484.
Richardson, J. F. & Zaki, W. N. 1954 Sedimentation and fluidisation: Part I. Trans. Inst. Chem. Engrs 32, 3553.
Rubinstein, G. J., Derksen, J. J. & Sundaresan, S. 2016 Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force. J. Fluid Mech. 788, 576601.
Schneiderbauer, S. & Pirker, S. 2014 Filtered and heterogeneity-based subgrid modifications for gas–solid drag and solid stresses in bubbling fluidized beds. AIChE J. 60 (3), 839854.
Somers, J. A. 1993 Direct simulation of fluid flow with cellular automata and the lattice-Boltzmann equation. Appl. Sci. Res. 51 (1–2), 127133.
Tang, Y., Peters, E. A. J. F. & Kuipers, J. A. M. 2016 Direct numerical simulations of dynamic gas–solid suspensions. AIChE J. 62 (6), 19581969.
Tenneti, S., Garg, R. & Subramaniam, S. 2011 Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Intl J. Multiphase Flow 37, 10721092.
Wang, J., van der Hoef, M. A. & Kuipers, J. A. M. 2009 Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: a tentative answer. Chem. Engng Sci. 64 (3), 622625.
Wang, X., Liu, K. & You, C. 2011 Drag force model corrections based on nonuniform particle distributions in multi-particle systems. Powder Technol. 209, 112118.
Wen, C. Y. & Yu, Y. H. 1966 Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 62 (1), 100111.
Xu, M., Ge, W. & Li, J. 2007 A discrete particle model for particle-fluid flow with considerations of sub-grid structures. Chem. Engng Sci. 62 (8), 23022308.
Zhou, G., Xiong, Q., Wang, L., Wang, X., Ren, X. & Ge, W. 2014 Structure-dependent drag in gas–solid flows studied with direct numerical simulation. Chem. Engng Sci. 116, 922.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title
Supplementary materials

Rubinstein et al supplementary material 1
Rubinstein et al supplementary material

 Unknown (92 KB)
92 KB

Lattice Boltzmann simulations of low-Reynolds-number flows past fluidized spheres: effect of inhomogeneities on the drag force

  • Gregory J. Rubinstein (a1), Ali Ozel (a1), Xiaolong Yin (a2), J. J. Derksen (a3) and Sankaran Sundaresan (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed