Skip to main content Accessibility help
×
Home

Lattice Boltzmann method for direct numerical simulation of turbulent flows

  • S. S. CHIKATAMARLA (a1), C. E. FROUZAKIS (a1), I. V. KARLIN (a1) (a2), A. G. TOMBOULIDES (a3) and K. B. BOULOUCHOS (a1)...

Abstract

We present three-dimensional direct numerical simulations (DNS) of the Kida vortex flow, a prototypical turbulent flow, using a novel high-order lattice Boltzmann (LB) model. Extensive comparisons of various global and local statistical quantities obtained with an incompressible-flow spectral element solver are reported. It is demonstrated that the LB method is a promising alternative for DNS as it quantitatively captures all the computed statistics of fluid turbulence.

Copyright

Corresponding author

Email address for correspondence: shyam_css@yahoo.com

References

Hide All
Ansumali, S. & Karlin, I. V. 2005 Consistent lattice Boltzmann method. Phys. Rev. Lett. 95, 260605.
Ansumali, S., Karlin, I. V., Arcidiacono, S., Abbas, A. & Prasianakis, N. I. 2007 Hydrodynamics beyond Navier–Stokes: exact solution to the lattice Boltzmann hierarchy. Phys. Rev. Lett. 98, 124502.
Ansumali, S., Karlin, I. V. & Öttinger, H. C. 2003 Minimal entropic kinetic models for simulating hydrodynamics. Europhys. Lett. 63, 798804.
Arcidiacono, S., Karlin, I. V., Mantzaras, J. & Frouzakis, C. E. 2007 Lattice Boltzmann model for the simulation of multi-component mixtures. Phys. Rev. E 76, 046703.
Benzi, R. & Succi, S. 1990 Two-dimensional turbulence with the lattice Boltzmann equation. J. Phys. A 23 (1), L1L5.
Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145197.
Boratav, O. N. & Pelz, R. B. 1994 Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. Phys. Fluids 6, 2757.
Brachet, M. E. 1991 Direct simulation of three-dimensional turbulence in the Taylor–Green vortex. Fluid Dyn. Res. 8, 1.
Chikatamarla, S. S., Ansumali, S. & Karlin, I. V. 2006 Entropic lattice Boltzmann models for hydrodynamic in three dimensions. Phys. Rev. Lett. 97, 010201.
Chikatamarla, S. S. & Karlin, I. V. 2006 Entropic and Galilean invariance of lattice Boltzmann theories. Phys. Rev. Lett. 97, 090601.
Chikatamarla, S. S. & Karlin, I. V. 2009 Lattices for the lattice Boltzmann method. Phys. Rev. E. 79, 046701.
Hazi, G. & Kavran, P. 2006 On the cubic velocity deviations in lattice Boltzmann methods. J. Phys. A: Math. Gen. 39 (12), 31273136.
Karlin, I. V., Ferrante, A. & Ottinger, H. C. 1999 Perfect entropy functions of the lattice Boltzmann method. Europhys. Lett. 47, 182188.
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414.
Keating, B., Vahala, G., Yepez, J., Soe, M. & Vahala, L. 2007 Entropic lattice Boltzmann representations required to recover Navier–Stokes flows. Phys. Rev. E 75, 036712.
Kida, S. 1985 Three-dimensional periodic flows with high-symmetry. J. Phys. Soc. Japan 54, 2132.
Kida, S. & Murakami, Y. 1987 Kolmogorov similarity in freely decaying turbulence. Phys. Fluids 30, 2030.
Kolmogorov, A. N. 1941 The local structure of turbulence in an incompressible fluid with very large Reynolds number. C. R. Acad. Sci. 30, 301.
McNamara, G. R., Garcia, A. L. & Alder, B. J. 1995 Stabilization of thermal Lattice Boltzmann models. J. Stat. Phys. 81, 395408.
Mei, R., Luo, L. S., Lallemand, P. & d'Humieres, D. 2006 Consistent initial conditions for lattice Boltzmann simulations. Comput. Fluids 35, 855862.
Orszag, S. A. 1983 Numerical simulation of the Taylor–Green vortex. Proc. Symp. Comput. Method. Appl. Sci. Engng 50, 50.
Patera, A. T. 1984 A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468488.
Philippi, P. C., Hegele, L. A. Jr, Dos Santos, L. O. & Surmas, R. 2006 From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models. Phys. Rev. E 73 (5 Pt 2), 056702.
Qian, Y. H. & Orszag, S. A. 1993 Lattice BGK models for the Navier–Stokes equation: nonlinear deviation in compressible regimes. Europhys. Lett. 21, 255259.
Qian, Y.-H. & Zhou, Y. 1998 Complete Galilean-invariant lattice BGK models for the Navier–Stokes equation. Europhys. Lett. 42 (4), 359364.
Shan, X. W. & He, X. 1998 Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80, 65.
Shan, X. W., Yuan, X. & Chen, H. 2006 Kinetic theory representation of hydrodynamics: a way beyond the Navier—Stokes equation. J. Fluid Mech. 550, 413441.
Succi, S. 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press.
Swift, M. R., Orlandini, E., Osborn, W. R. & Yeomans, J. M. 1996 Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E 54, 5041.
Tomboulides, A. G., Israeli, M. & Karniadakis, G. E. 1989 Efficient removal of boundary-divergence errors in time-splitting methods. J. Sci. Comput. 4, 291.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Lattice Boltzmann method for direct numerical simulation of turbulent flows

  • S. S. CHIKATAMARLA (a1), C. E. FROUZAKIS (a1), I. V. KARLIN (a1) (a2), A. G. TOMBOULIDES (a3) and K. B. BOULOUCHOS (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed