Skip to main content Accessibility help

Late time evolution of unforced inviscid two-dimensional turbulence



We propose a new unified model for the small, intermediate and large-scale evolution of freely decaying two-dimensional turbulence in the inviscid limit. The new model's centerpiece is a recent theory of vortex self-similarity (Dritschel et al., Phys. Rev. Lett., vol. 101, 2008, no. 094501), applicable to the intermediate range of scales spanned by an expanding population of vortices. This range is predicted to have a steep k−5 energy spectrum. At small scales, this gives way to Batchelor's (Batchelor, Phys. Fluids, vol. 12, 1969, p. 233) k−3 energy spectrum, corresponding to the (forward) enstrophy (mean square vorticity) cascade or, physically, to thinning filamentary debris produced by vortex collisions. This small-scale range carries with it nearly all of the enstrophy but negligible energy. At large scales, the slow growth of the maximum vortex size (~t1/6 in radius) implies a correspondingly slow inverse energy cascade. We argue that this exceedingly slow growth allows the large scales to approach equipartition (Kraichnan, Phys. Fluids, vol. 10, 1967, p. 1417; Fox & Orszag, Phys. Fluids, vol. 12, 1973, p. 169), ultimately leading to a k1 energy spectrum there. Put together, our proposed model has an energy spectrum ℰ(k, t) ∝ t1/3k1 at large scales, together with ℰ(k, t) ∝ t−2/3k−5 over the vortex population, and finally ℰ(k, t) ∝ t−1k−3 over an exponentially widening small-scale range dominated by incoherent filamentary debris.

Support for our model is provided in two parts. First, we address the evolution of large and ultra-large scales (much greater than any vortex) using a novel high-resolution vortex-in-cell simulation. This verifies equipartition, but more importantly allows us to better understand the approach to equipartition. Second, we address the intermediate and small scales by an ensemble of especially high-resolution direct numerical simulations.


Corresponding author

Email address for correspondence:


Hide All
Bartello, P. & Warn, T. 1996 Self-similarity of decaying two-dimensional turbulence. J. Fluid Mech. 326, 357372.
Batchelor, G. K. 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12, 233239.
Benzi, R., Colella, M., Briscolini, M. & Santangelo, P. 1992 A simple point vortex model for two-dimensional decaying turbulence. Phys. Fluids 4, 1036.
Benzi, R., Patarnello, S. & Santangelo, P. 1988 Self-similar coherent structures in two-dimensional decaying turbulence. J. Phys. A 21, 12211237.
Bracco, A., McWilliams, J. C., Murante, G., Provenzale, A. & Weiss, J. B. 2000 Revisiting freely decaying two-dimensional turbulence at millennial resolution. Phys. Fluids 12, 29312941.
Carnevale, G. F., McWilliams, J. C., Pomeau, Y., Weiss, J. B. & Young, W. R. 1991 Evolution of vortex statistics in two-dimensional turbulence. Phys. Rev. Lett. 66, 27352737.
Charney, J. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 10871095.
Chasnov, J. R. 1997 On the decay of two-dimensional homogeneous turbulence. Phys. Fluids 9, 171180.
Christiansen, J. P. & Zabusky, N. J. 1973 Instability, coalescence and fission of finite-area vortex structures. J. Fluid Mech. 61, 219243.
Clercx, H. J. H., Maassen, S. R. & Van Heijst, G. J. F. 1999 Decaying two-dimensional turbulence in square containers with no-slip or stress-free boundaries. Phys. Fluids 11, 611626.
Davidson, P. A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.
Davidson, P. A. 2007 On the large-scale structure of homogeneous, two-dimensional turbulence. J. Fluid Mech. 580, 431450.
Dritschel, D. G. & Ambaum, M. H. P. 1997 A contour-advective semi-Lagrangian algorithm for the simulation of fine-scale conservative fields. Quart. J. R. Meteorol. Soc. 123, 10971130.
Dritschel, D. G. & Scott, R. 2009 On the simulation of nearly inviscid two-dimensional turbulence. J. Comput. Phys. 228, 27072711.
Dritschel, D. G., Scott, R. K., Macaskill, C., Gottwald, G. A. & Tran, C. V. 2008 Unifying scaling theory for vortex dynamics in two-dimensional turbulence. Phys. Rev. Lett. 101, 094501.
Dritschel, D. G., Tran, C. V. & Scott, R. K. 2007 Revisiting Batchelor's theory of two-dimensional turbulence. J. Fluid Mech. 591, 379391.
Dritschel, D. G. & Zabusky, N. J. 1996 On the nature of vortex interactions and models in unforced nearly-inviscid two-dimensional turbulence. Phys. Fluids 8 (5), 12521256.
Eyink, G. L. & Spohn, H. 1993 Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence. J. Stat. Phys. 70, 833886.
Eyink, G. L. & Sreenivasan, K. R. 2006 Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78, 87135.
Fontane, J. & Dritschel, D. G. 2009 The HyperCASL algorithm: a new approach to the numerical simulation of geophysical flows. J. Comput. Phys. 228 (17), 64116425.
Fox, D. G. & Orszag, S. A. 1973 Inviscid dynamics of two-dimensional turbulence. Phys. Fluids 16 (2), 169171.
Gill, A. E. 1982 Atmosphere–Ocean Dynamics. Academic.
Joyce, G. & Montgomery, D. 1973 Negative temperature states for the two-dimensional guiding center plasma. J. Plasma Phys. 10, 107121.
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.
Laval, J. P., Chavanis, P. H., Dubrulle, B. & Sire, C. 2001 Scaling laws and vortex profiles in 2D decaying turbulence. Phys. Rev. E 63, 065301R.
Lesieur, M. 2008 Turbulence in Fluids, 4th edn. Springer.
Lowe, A. J. & Davidson, P. A. 2005 The evolution of freely-decaying, isotropic, two-dimensional turbulence. Eur. J. Mech. B/Fluids 24, 314327.
McWilliams, J. C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 2143.
Miller, R. 1990 Statistical mechanics of negative temperature states. Phys. Rev. Lett. 65, 21372140.
Montgomery, D. & Joyce, G. 1974 Statistical mechanics of negative temperature states. Phys. Fluids 17, 11391145.
Onsager, L. 1949 Statistical hydrodynamics. Nuovo Cimento 6, 279287.
Orszag, S. A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41, 363386.
Ossai, S. & Lesieur, M. 2001 Large-scale energy and pressure dynamics in decaying 2D incompressible isotropic turbulence. J. Turbul. 2, 172205.
Robert, R. 1991 A maximum-entropy principle for two-dimensional perfect fluid dynamics. J. Stat. Phys. 65, 531554.
Robert, R. & Sommeria, J. 1991 Statistical equilibrium states for two-dimensional flows J. Fluid Mech. 229, 291310.
Sire, C. & Chavanis, P. H. 2000 Numerical renormalization group of vortex aggregation in 2D decaying turbulence: the role of three-body interactions. Phys. Rev. E 61, 66446653.
Tabeling, P. 2002 Two-dimensional turbulence: a physicist approach Phys. Rep. 362, 162.
Tran, C. V. & Dritschel, D. G. 2006 Large-scale dynamics in two-dimensional Euler and surface quasigeostrophic flows. Phys. Fluids 18, 121703.
Weiss, J. B. & McWilliams, J. C. 1993 Temporal scaling behavior of decaying two-dimensional turbulence. Phys. Fluids 5, 608621.
MathJax is a JavaScript display engine for mathematics. For more information see

Late time evolution of unforced inviscid two-dimensional turbulence



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.