Skip to main content Accessibility help

Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers



In this paper we investigate the relationship between the large- and small-scale energy-containing motions in wall turbulence. Recent studies in a high-Reynolds-number turbulent boundary layer (Hutchins & Marusic, Phil. Trans. R. Soc. Lond. A, vol. 365, 2007a, pp. 647–664) have revealed a possible influence of the large-scale boundary-layer motions on the small-scale near-wall cycle, akin to a pure amplitude modulation. In the present study we build upon these observations, using the Hilbert transformation applied to the spectrally filtered small-scale component of fluctuating velocity signals, in order to quantify the interaction. In addition to the large-scale log-region structures superimposing a footprint (or mean shift) on the near-wall fluctuations (Townsend, The Structure of Turbulent Shear Flow, 2nd edn., 1976, Cambridge University Press; Metzger & Klewicki, Phys. Fluids, vol. 13, 2001, pp. 692–701.), we find strong supporting evidence that the small-scale structures are subject to a high degree of amplitude modulation seemingly originating from the much larger scales that inhabit the log region. An analysis of the Reynolds number dependence reveals that the amplitude modulation effect becomes progressively stronger as the Reynolds number increases. This is demonstrated through three orders of magnitude in Reynolds number, from laboratory experiments at Reτ ~ 103–104 to atmospheric surface layer measurements at Reτ ~ 106.


Corresponding author

Email address for correspondence:


Hide All
Abe, H., Kawamura, H. & Choi, H. 2004 Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to Re τ = 640. Trans. ASME J. Fluid Engng 126, 835843.
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.
del Álamo, J. C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15 (6), L41L44.
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.
Bailey, S. C. C., Hultmark, M., Smits, A. & Schultz, M. P. 2008 Azimuthal structure of turbulence in high Reynolds number pipe flow. J. Fluid Mech. 615, 121138.
Bandyopadhyay, P. R. & Hussain, A. K. M. F. 1984 The coupling between scales in shear flows. Phys. Fluids 27 (9), 22212228.
Bendat, J. S. & Piersol, A. G. 1986 Random Data: Analysis and Measurement Procedure, 2nd edn. Wiley InterScience.
Blackwelder, R. F. & Kovasznay, L. S. G. 1972 Time scales and correlations in a turbulent boundary layer. Phys. Fluids 15, 15451554.
Bracewell, R. 2000 The Fourier Transform and Its Applications, 3rd edn. McGraw-Hill.
DeGraaff, D. B. & Eaton, J. K. 2000 Reynolds number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.
Dennis, D. J. C. & Nickels, T. B. 2008 On the limitations of Taylor's hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech. 614, 197206.
Fife, P., Wei, T., Klewicki, J. & McMurtry, P. 2005 Stress gradient balance layers and scale hierarchies in wall bounded turbulent flows. J. Fluid Mech. 532, 165189.
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2006 Large-scale motions in a supersonic boundary layer. J. Fluid Mech. 556, 271282.
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.
Guala, M., Hommema, S. E. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.
Guala, M., Metzger, M. M. & McKeon, B. J. 2009 Interactions across the turbulent boundary layer at high Reynolds numbers. In preparation.
Hahn, S. L. 1996 The Hilbert Transforms in Signal Processing. Artech House.
Hambleton, W. T., Hutchins, N. & Marusic, I. 2006 Simultaneous orthogonal-plane particular image velocimetry measurements in turbulent boundary layer. J. Fluid Mech. 560, 5364.
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003. Phys. Fluids 18, 011702.
Hristov, T., Friehe, C. & Miller, S. 1998 Wave-coherent fields in air flow over ocean waves: Identification of cooperative behaviour buried in turbulence. Phys. Rev. Lett. 81 (23), 52455248.
Huang, N. E., Shen, Z. & Long, S. R. 1999 A new view of the nonlinear water waves: the Hilbert spectrum. Annu. Rev. of Fluid Mech. 31, 417457.
Hunt, J. C. R. & Morrison, J. F. 2000 Eddy structure in turbulent boundary layers. Eur. J. Mech. B 19, 673694.
Hutchins, N. & Marusic, I. 2005 Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J. Fluid Mech. 541, 2154.
Hutchins, N. & Marusic, I. 2007 a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Hutchins, N. & Marusic, I. 2007 b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365, 647664.
Hutchins, N., Nickels, T., Marusic, I. & Chong, M. S. 2009 Spatial resolution issues in hot-wire anemometry. J. Fluid Mech. In press.
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.
Jones, M. B., Marusic, I. & Perry, A. E. 2001 Evolution and structure of sink-flow turbulent boundary layers. J. Fluid Mech. 428, 127.
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.
Klewicki, J. C. & Falco, R. E. 1990 On accurately measuring statistics associated with small-scale structure in turbulent boundary layers using hot-wire probes. J. Fluid Mech. 219, 119142.
Klewicki, J., Fife, P., Wei, T. & McMurty, P. 2007 A physical model of the turbulent boundary layer consonant with mean momentum balance structure. Phil. Trans. R. Soc. Lond. A 365, 823840.
Klewicki, J. C., Metzger, M. M., Kelner, E. & Thurlow, E. M. 1995 Viscous sublayer flow visualizations at Re θ = 1500000. Phys. Fluids 7, 857963.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Rundstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.
Kunkel, G. J. & Marusic, I. 2006 Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using atmospheric flow. J. Fluid Mech. 548, 375402.
Marusic, I. & Heuer, W. D. C. 2007 Reynolds number invariance of the structure angle in wall turbulence. Phys. Rev. Lett. 99, 114501.
Marusic, I. & Hutchins, N. 2008 Study of the log-layer structure in wall turbulence over a very large range of Reynolds number. Flow. Turbul. Combust. 81, 115130.
Marusic, I. & Kunkel, G. J. 2003 Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids 15, 24612464.
Mathis, R., Hutchins, N. & Marusic, I. 2007 Evidence of large-scale amplitude modulation on the near-wall turbulence. In 16th Australasian Fluid Mechanics Conference, Gold Cost, Australia.
Metzger, M. M. & Klewicki, J. C. 2001 A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys. Fluids 13, 692701.
Metzger, M. M., Klewicki, J. C., Bradshaw, K. L. & Sadr, R. 2001 Scaling the near-wall axial turbulent stress in the zero pressure gradient boundary layer. Phys. Fluids 13 (6), 18191821.
Metzger, M., McKeon, B. J. & Holmes, H. 2007 The near-neutral atmospheric surface layer: turbulence and non-stationarity. Phil. Trans. R. Soc. Lond. A 365, 859876.
Monty, J. P., Stewart, J. A., Williams, R. C. & Chong, M. S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.
Nickels, T. B., Marusic, I., Hafez, S. & Chong, M. S. 2005 Evidence of the k 1−1 law in high-Reynolds number turbulent boundary layer. Phys. Rev. Lett. 95, 074501.
Ouergli, A. 2002 Hilbert transform from wavelet analysis to extract the envelope of an atmospheric model: examples. J. Atmos. Ocean. Technol. 19, 10821086.
Panton, R. L. 2001 Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci. 37, 341383.
Papoulis, A. 1962 The Fourier Integral and Its Applications. McGraw-Hill.
Papoulis, A. & Pillai, S. U. 2002 Probability, Random Variables and Stochastic Processes. McGraw-Hill.
Rao, K. N., Narasimha, R. & Badri Narayanan, M. A. 1971 The ‘bursting’ phenomena in a turbulent boundary layer. J. Fluid Mech. 48, 339352.
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.
Spark, E. H. & Dutton, J. A. 1972 Phase angle consideration in the modelling of the intermittant turbulence. J. Atmos. Sci. 29.
Sreenivasan, K. R. 1985 On the finite-scale intermittency of turbulence. J. Fluid Mech. 151, 81103.
Tardu, S. F. 2008 Stochastic synchronization of the near wall turbulence. Phys. Fluids 20, 045105.
Toh, S. & Itano, T. 2005 Interaction between a large-scale structure and near-wall structures in channel flow. J. Fluid Mech. 524, 249262.
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Wark, C. E. & Nagib, H. M. 1991 Experimental investigation of coherent structures in turbulent boundary layers. J. Fluid Mech. 230, 183208.
Wark, C. E., Naguib, A. M. & Robinson, S. K. 1991 Scaling of spanwise length scales in a turbulent boundary layer. Paper 91-0235. AIAA.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.