Skip to main content Accessibility help
×
Home

Large-eddy simulation of flow over an axisymmetric body of revolution

  • Praveen Kumar (a1) and Krishnan Mahesh (a1)

Abstract

Wall-resolved large-eddy simulation (LES) is used to simulate flow over an axisymmetric body of revolution at a Reynolds number, $Re=1.1\times 10^{6}$ , based on the free-stream velocity and the length of the body. The geometry used in the present work is an idealized submarine hull (DARPA SUBOFF without appendages) at zero angle of pitch and yaw. The computational domain is chosen to avoid confinement effects and capture the wake up to fifteen diameters downstream of the body. The unstructured computational grid is designed to capture the fine near-wall flow structures as well as the wake evolution. LES results show good agreement with the available experimental data. The axisymmetric turbulent boundary layer has higher skin friction and higher radial decay of turbulence away from the wall, compared to a planar turbulent boundary layer under similar conditions. The mean streamwise velocity exhibits self-similarity, but the turbulent intensities are not self-similar over the length of the simulated wake, consistent with previous studies reported in the literature. The axisymmetric wake shifts from high- $Re$ to low- $Re$ equilibrium self-similar solutions, which were only observed for axisymmetric wakes of bluff bodies in the past.

Copyright

Corresponding author

Email address for correspondence: kmahesh@umn.edu

References

Hide All
Alin, N., Bensow, R. E., Fureby, C., Huuva, T. & Svennberg, U. 2010 Current capabilities of DES and LES for submarines at straight course. J. Ship Res. 54 (3), 184196.
Babu, P. C. & Mahesh, K. 2004 Upstream entrainment in numerical simulations of spatially evolving round jets. Phys. Fluids 16 (10), 36993705.
Chase, N. & Carrica, P. M. 2013 Submarine propeller computations and application to self-propulsion of DARPA Suboff. Ocean Engng 60, 6880.
Chase, N., Michael, T. & Carrica, P. M. 2013 Overset simulation of a submarine and propeller in towed, self-propelled and maneuvering conditions. Intl Shipbuilding Prog. 60 (1–4), 171205.
Clauser, F. H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21 (2), 91108.
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 1760.
Groves, N. C., Huang, T. T. & Chang, M. S. 1989 Geometric Characteristics of DARPA Suboff Models: (DTRC Model Nos. 5470 and 5471). David Taylor Research Center.
Huang, T., Liu, H. L., Grooves, N., Forlini, T., Blanton, J. & Gowing, S. 1992 Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFF experimental program. In Proceedings of the 19th Symposium on Naval Hydrodynamics, Seoul, Korea. National Academy Press.
Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Res. Rep. CTR-S88, p. 193.
Jiménez, J., Hoyas, S., Simens, M. P. & Mizuno, Y. 2010a Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335360.
Jiménez, J. M., Hultmark, M. & Smits, A. J. 2010b The intermediate wake of a body of revolution at high Reynolds numbers. J. Fluid Mech. 659, 516539.
Jiménez, J. M., Reynolds, R. T. & Smits, A. J. 2010c The effects of fins on the intermediate wake of a submarine model. Trans. ASME J. Fluids Engng 132 (3), 031102.
Johansson, P. B. V. & George, W. K. 2006 The far downstream evolution of the high-Reynolds-number axisymmetric wake behind a disk. Part 1. Single-point statistics. J. Fluid Mech. 555, 363385.
Johansson, P. B. V., George, W. K. & Gourlay, M. J. 2003 Equilibrium similarity, effects of initial conditions and local Reynolds number on the axisymmetric wake. Phys. Fluids 15 (3), 603617.
Kim, S.-E., Rhee, B. J. & Miller, R. W. 2013 Anatomy of turbulent flow around DARPA SUBOFF body in a turning maneuver using high-fidelity RANS computations. Intl Shipbuilding Prog. 60 (1), 207231.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (04), 741773.
Kumar, P. & Mahesh, K. 2017 Large eddy simulation of propeller wake instabilities. J. Fluid Mech. 814, 361396.
Kumar, P. & Mahesh, K. 2018 Analysis of axisymmetric boundary layers. J. Fluid Mech. 849, 927941.
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure model. Phys. Fluids A 4 (3), 633.
Lueptow, R. M. 1990 Turbulent boundary layer on a cylinder in axial flow. AIAA J. 28 (10), 17051706.
Luxton, R. E., Bull, M. K. & Rajagopalan, S. 1984 The thick turbulent boundary layer on a long fine cylinder in axial flow. Aeronaut. J. 88, 186199.
Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197 (1), 215240.
Mahesh, K., Kumar, P., Gnanaskandan, A. & Nitzkorski, Z. 2015 LES applied to ship research. J. Ship Res. 59 (4), 238245.
Oertel, H. Jr. 1990 Wakes behind blunt bodies. Annu. Rev. Fluid Mech. 22 (1), 539562.
Park, N. & Mahesh, K. 2009 Reduction of the Germano-identity error in the dynamic Smagorinsky model. Phys. Fluids 21 (6), 065106.
Patel, V. C., Nakayama, A. & Damian, R. 1974 Measurements in the thick axisymmetric turbulent boundary layer near the tail of a body of revolution. J. Fluid Mech. 63 (2), 345367.
Pope, S. B. 2001 Turbulent Flows. Cambridge University Press.
Posa, A. & Balaras, E. 2016 A numerical investigation of the wake of an axisymmetric body with appendages. J. Fluid Mech. 792, 470498.
Rotta, J.1953 On the theory of the turbulent boundary layer. NACA Tech. Mem. 1344.
Stella, F., Mazellier, N. & Kourta, A. 2017 Scaling of separated shear layers: an investigation of mass entrainment. J. Fluid Mech. 826, 851887.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Vaz, G., Toxopeus, S. & Holmes, S. 2010 Calculation of manoeuvring forces on submarines using two viscous-flow solvers. In Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China. ASME.
Verma, A. & Mahesh, K. 2012 A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows. Phys. Fluids 24 (8), 085101.
Yang, C. & Löhner, R. 2003 Prediction of flows over an axisymmetric body with appendages. In The 8th International Conference on Numerical Ship Hydrodynamics, Busan, Korea.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed