Skip to main content Accessibility help
×
Home

A Lagrangian study of turbulent mixing: forward and backward dispersion of molecular trajectories in isotropic turbulence

  • D. Buaria (a1), P. K. Yeung (a1) (a2) and B. L. Sawford (a3)

Abstract

Statistics of the trajectories of molecules diffusing via Brownian motion in a turbulent flow are extracted from simulations of stationary isotropic turbulence, using a postprocessing approach applicable in both forward and backward reference frames. Detailed results are obtained for Schmidt numbers ( $Sc$ ) from 0.001 to 1000 at Taylor-scale Reynolds numbers up to 1000. The statistics of displacements of single molecules compare well with the earlier theoretical work of Saffman (J. Fluid Mech. vol. 8, 1960, pp. 273–283) except for the scaling of the integral time scale of the fluid velocity following the molecular trajectories. For molecular pairs we extend Saffman’s theory to include pairs of small but finite initial separation, which is in excellent agreement with numerical results provided that data are collected at sufficiently small times. At intermediate times the separation statistics of molecular pairs exhibit a more robust Richardson scaling behaviour than for the fluid particles. The forward scaling constant is very close to 0.55, whereas the backward constant is approximately 1.53–1.57, with a weak Schmidt number dependence, although no scaling exists if $Sc\ll 1$ at the Reynolds numbers presently accessible. An important innovation in this work is to demonstrate explicitly the practical utility of a Lagrangian description of turbulent mixing, where molecular displacements and separations in the limit of small backward initial separation can be used to calculate the evolution of scalar fluctuations resulting from a known source function in space. Lagrangian calculations of the production and dissipation rates of the scalar fluctuations are shown to agree very well with Eulerian results for the case of passive scalars driven by a uniform mean gradient. Although the Eulerian–Lagrangian comparisons are made only for $Sc\sim O(1)$ , the Lagrangian approach is more easily extended to both very low and very high Schmidt numbers. The well-known scalar dissipation anomaly is accordingly also addressed in a Lagrangian context.

Copyright

Corresponding author

Email address for correspondence: pk.yeung@ae.gatech.edu

References

Hide All
Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.
Batchelor, G. K., Howells, I. D. & Townsend, A. A. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity. J. Fluid Mech. 5, 134139.
Benveniste, D. & Drivas, T. D. 2014 Asymptotic results for backwards two-particle dispersion in turbulent flow. Phys. Rev. E 89, 041003.
Berg, J., Luthi, B., Mann, J. & Ott, S. 2006 Backwards and forwards relative dispersion in turbulent flow: an experimental investigation. Phys. Rev. E 74, 016304.
Bernard, D., Gawedzki, K. & Kupiainen, A. 1998 Slow modes in passive advection. J. Stat. Phys. 90, 519569.
Borgas, M. S., Sawford, B. L., Xu, S., Donzis, D. A. & Yeung, P. K. 2004 High Schmidt number scalars in turbulence: structure functions and Lagrangian theory. Phys. Fluids 16, 38883899.
Bragg, A. D., Ireland, P. J. & Collins, L. R. 2016 Forward and backward in time dispersion of fluid and inertial particles in isotropic turbulence. Phys. Fluids 28, 013305.
Buaria, D., Sawford, B. L. & Yeung, P. K. 2015 Characteristics of backward and forward two-particle relative dispersion in turbulence at different Reynolds numbers. Phys. Fluids 27, 105101.
Donzis, D. A., Sreenivasan, K. R. & Yeung, P. K. 2005 Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199216.
Donzis, D. A., Sreenivasan, K. R. & Yeung, P. K. 2010 The Batchelor spectrum for mixing of passive scalars in isotropic turbulence. Flow Turbul. Combust. 85, 549566.
Donzis, D. A. & Yeung, P. K. 2010 Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence. Physica D 239, 12781287.
Durbin, P. A. 1980 A stochastic model of 2-particle dispersion and concentration fluctuations in homogeneous turbulence. J. Fluid Mech. 100, 279302.
Eswaran, V. & Pope, S. B. 1988 An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257278.
Eyink, G. 2011 Stochastic flux freezing and magnetic dynamo. Phys. Rev. E 83, 056405.
Eyink, G. & Benveniste, D. 2013 Diffusion approximation in turbulent two-particle dispersion. Phys. Rev. E 88, 041001(R).
Gardiner, C. 1983 Handbook of Stochastic Methods for Physics: Chemistry and the Natural Sciences. Springer.
Gotoh, T. & Yeung, P. K. 2013 Passive scalar transport in turbulence: a computational perspective. In Ten Chapters in Turbulence (ed. Davidson, P. A., Kaneda, Y. & Sreenivasan, K. R.), Cambridge University Press.
Jucha, J., Xu, H., Pumir, A. & Bodenschatz, E. 2014 Time-reversal-symmetry breaking in turbulence. Phys. Rev. Lett. 113, 054501.
Kerr, R. M. 1985 Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 3158.
Kloeden, P. E. & Platen, E. 1992 Numerical Solution of Stochastic Differential Equations. Springer.
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics, vol. 1. MIT Press.
Overholt, M. R. & Pope, S. B. 1996 Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence. Phys. Fluids 8, 31283148.
Papavassiliou, D. V. & Hanratty, T. J. 1995 Synthesis of temperature fields in terms of the behavior of instantaneous wall sources. In Proceedings of 10th Symposium on Turbulent Shear Flows, pp. 31–19–31–24.
Pope, S. B. 1994 Lagrangian pdf methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 2363.
Pope, S. B. 1998 The vanishing effect of molecular diffusivity on turbulent dispersion: implications for turublent mixing and scalar flux. J. Fluid Mech. 359, 299312.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance neighbour graph. Proc. R. Soc. Lond. A 110, 709737.
Saffman, P. G. 1960 On the effect of the molecular diffusivity in turbulent diffusion. J. Fluid Mech. 8, 273283.
Sawford, B. L. & Hunt, J. C. R. 1986 Effects of turbulence structure, molecular diffusion and source size on scalar fluctuations in homogeneous turbulence. J. Fluid Mech. 165, 373400.
Sawford, B. L. & Pinton, J.-F. 2013 A Lagrangian view of turbulent dispersion and mixing. In Ten Chapters in Turbulence (ed. Davidson, P. A., Kaneda, Y. & Sreenivasan, K. R.), Cambridge University Press.
Sawford, B. L., Yeung, P. K. & Borgas, M. S. 2005 Comparsion of backwards and forwards relative dispersion in turbulence. Phys. Fluids 17, 095109.
Sawford, B. L., Yeung, P. K. & Hackl, J. F. 2008 Reynolds number dependence of relative dispersion statistics in isotropic turbulence. Phys. Fluids 20, 065111.
Srinivasan, C. & Papavassiliou, D. V. 2012 Comparsion of backwards and forwards scalar relative dispersion in turbulent shear flow. Intl J. Heat Mass Transfer 55, 56505664.
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196202.
Thomson, D. J. 1990 A stochastic model for the motion of particle pairs in isotropic high-Reynolds-number turbulence, and its application to the problem of concentration variance. J. Fluid Mech. 210, 113153.
Thomson, D. J. 2003 Dispersion of particle pairs and decay of scalar fields in isotropic turbulence. Phys. Fluids 15, 801813.
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.
Warhaft, Z 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.
Watanabe, T. & Gotoh, T. 2006 Intermittency in passive scalar turbulence under the uniform mean scalar gradient. Phys. Fluids 18, 058105.
Yeung, P. K. 1994 Direct numerical simulation of two-particle relative diffusion in isotropic turbulence. Phys. Fluids 6, 34163428.
Yeung, P. K. 2002 Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115142.
Yeung, P. K. & Pope, S. B. 1988 An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79, 373416.
Yeung, P. K., Pope, S. B., Lamorgese, A. G. & Donzis, D. A. 2006 Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18, 065103.
Yeung, P. K. & Sreenivasan, K. R. 2014 Direct numerical simulation of turbulent mixing at very low Schmidt number with a uniform mean gradient. Phys. Fluids 26, 015107.
Yeung, P. K., Xu, S. & Sreenivasan, K. R. 2002 Schmidt number effects on turbulent transport with uniform mean scalar gradient. Phys. Fluids 14, 41784191.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

A Lagrangian study of turbulent mixing: forward and backward dispersion of molecular trajectories in isotropic turbulence

  • D. Buaria (a1), P. K. Yeung (a1) (a2) and B. L. Sawford (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed