Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T21:29:21.708Z Has data issue: false hasContentIssue false

Lagrangian statistics from direct numerical simulations of isotropic turbulence

Published online by Cambridge University Press:  26 April 2006

P. K. Yeung
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
S. B. Pope
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA

Abstract

A comprehensive study is reported of the Lagrangian statistics of velocity, acceleration, dissipation and related quantities, in isotropic turbulence. High-resolution direct numerical simulations are performed on 643 and 1283 grids, resulting in Taylor-scale Reynolds numbers Rλ in the range 38-93. The low-wavenumber modes of the velocity field are forced so that the turbulence is statistically stationary. Using an accurate numerical scheme, of order 4000 fluid particles are tracked through the computed flow field, and hence time series of Lagrangian velocity and velocity gradients are obtained.

The results reported include: velocity and acceleration autocorrelations and spectra; probability density functions (p.d.f.'s) and moments of Lagrangian velocity increments; and p.d.f.'s, correlation functions and spectra of dissipation and other velocity-gradient invariants. It is found that the acceleration variance (normalized by the Kolmogorov scales) increases as R½λ - a much stronger dependence than predicted by the refined Kolmogorov hypotheses. At small time lags, the Lagrangian velocity increments are distinctly non-Gaussian with, for example, flatness factors in excess of 10. The enstrophy (vorticity squared) is found to be more intermittent than dissipation, having a standard-deviation-to-mean ratio of about 1.5 (compared to 1.0 for dissipation). The acceleration vector rotates on a timescale about twice the Kolmogorov scale, while the timescales of acceleration magnitude, dissipation and enstrophy appear to scale with the Lagrangian velocity timescale.

Type
Research Article
Copyright
© 1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, M. S. & Pope, S. B. 1985 In Turbulent Shear Flows 4 (ed. L. J. S. Bradbury et al.), pp. 4161. Springer.
Anand, M. S., Pope, S. B. & Mongia, H. C. 1989 In Turbulent Reactive Flows. Lecture Notes in Engineering, vol. 40, pp. 672693: Springer.
Anselmet, F., Gagne, Y., Hopfinger, E. J. & Antonia, R. A. 1984 J. Fluid Mech. 140, 63.
Antonia, R. A., Satyaprakash, B. R. & Hussain, A. K. M. F. 1982 J. Fluid Mech. 119, 55.
De Bass, A. F., Van Dop, H. & Nieuwstadt, F. T. M. 1986 Q. J. R. Met. Soc. 112, 165.
Comte-Bellot, G. & Corrsin, S. 1971 J. Fluid Mech. 48, 273.
Corrsin, S. 1963 J. Atmos. Sci. 20, 115.
Van Dop, H., Nieuwstadt, F. T. M. & Hunt, J. C. R. 1985 Phys. Fluids 28, 1639.
Eswaran, V. & Pope, S. B. 1988a Computers Fluids 16, 257.
Eswaran, V. & Pope, S. B. 1988b Phys. Fluids 31, 506.
Hanna, S. R. 1981 J. Appl. Met. 20, 242.
Haworth, D. C. & Pope, S. B. 1985 Bull. Am. Phys. Soc. 30, 1694.
Haworth, D. C. & Pope, S. B. 1986 Phys. Fluids 29, 387.
Haworth, D. C. & Pope, S. B. 1987 Phys. Fluids 30, 1026.
Hinze, O. 1975 Turbulence (2nd edn). McGraw-Hill.
Hunt, J. C. R., Buell, J. C. & Wray, A. A. 1987 In Proc. 1987 Summer Program, pp. 7794. Stanford-NASA Ames Center for Turbulence Research.
Hussaini, M. Y. & Zang, T. A. 1987 Ann. Rev. Fluid Mech. 19, 339.
Karlin, S. & Taylor, H. M. 1981 A Second Course in Stochastic Process. Academic.
Kerr, R. M. 1985 J. Fluid Mech. 153, 31.
Kolmogorov, A. N. 1941 Dokl. Akad. Nauk USSR 30, 299.
Kolmogorov, A. N. 1962 J. Fluid Mech. 13, 82.
Lee, C. K., Squires, K., Bertoglio, J.-P. & Ferziger, J. H. 1987 Study of Lagrangian and Eulerian characteristic times using direct numerical simulation of turbulence. In Proc. Sixth Symposium on Turbulent Shear Flows, Toulouse, France.
Lee, M. J. & Reynolds, W. C. 1985 Numerical experiments on the structure of homogeneous turbulence. Tech. Rep. TF-24, Dept. of Mech. Engng, Stanford University.
Lumley, J. L. 1962 In Mécanique de la Turbulence, pp. 1726. Centre National de la Recherche Scientifique, Paris.
Mestayer, P. 1982 J. Fluid Mech. 125, 475.
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics, vol. 1 (ed. J. L. Lumley). MIT Press.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2 (ed. J. L. Lumley). MIT Press.
Oboukhov, A. M. 1962 J. Fluid Mech. 13, 77.
Orszag, S. A. & Patterson, G. S. 1972 Phys. Rev. Lett. 28, 76.
Pope, S. B. 1983 Phys. Fluids 26, 404.
Pope, S. B. 1988a Stochastic model for Lagrangian dissipation. Tech. Rep. FDA-88–07, Sibley School of Mech. & Aero. Engng, Cornell University.
Pope, S. B. 1988b Stochastic model of Lagrangian velocity accounting for internal intermittency. Tech. Rep. FDA-88–11, Sibley School of Mech. & Aero. Engng, Cornell University.
Priestley, M. B. 1981 Spectral Analysis and Time Series. Academic.
Reid, J. D. 1979 Boundary Layer Met. 16, 3.
Riley, J. J. & Patterson, G. S. 1974 Phys. Fluids 17, 292.
Rogallo, R. S. 1981 Tech. Memo. 81315. NASA Ames Research Center.
Rogallo, R. S. & Moin, P. 1984 Ann. Rev. Fluid Mech. 16, 99.
Rogers, M. M. & Moin, P. 1987 J. Fluid Mech. 176, 33.
Sato, Y. & Yamamoto, K. 1987 J. Fluid Mech. 175, 183.
Schlichting, H. 1979 Boundary Layer Theory (7th edn). McGraw-Hill.
Shlien, D. J. & Corrsin, S. 1974 J. Fluid Mech. 62, 255.
Siggia, E. D. 1981 J. Fluid Mech. 107, 375.
Snyder, W. H. & Lumley, J. L. 1917 J. Fluid Mech. 48, 41.
Tavoularis, S. & Corrsin, S. 1981a J. Fluid Mech. 104, 311.
Tavoularis, S. & Corrsin, S. 1981b J. Fluid Mech. 104, 349.
Taylor, G. I. 1921 Proc. Lond. Math. Soc. (2) 20, 196.
Tennekes, H. 1975 J. Fluid Mech. 67, 561.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Thomson, D. J. 1987 J. Fluid Mech. 180, 529.
Warhaft, Z. 1984 J. Fluid Mech. 14, 363.
Warhaft, Z. & Lumley, J. L. 1978 J. Fluid Mech. 88, 659.
Yeung, P. K., Girimaji, S. & Pope, S. B. 1988 Eulerian and Lagrangian statistics from a high-resolution direct simulation of stationary homogeneous turbulence. Tech. Rep. FDA-88–02, Sibley School of Mech. & Aero. Engng, Cornell University.
Yeung, P. K. & Pope, S. B. 1987 Lagrangian velocity statistics obtained from direct numerical simulations of homogeneous turbulence. In Proc. Sixth Symposium on Turbulent Shear Flows, Toulouse, France.
Yeung, P. K. & Pope, S. B. 1988 J. Comput. Phys. 79, 373.