Armitage, P. J.
2010
Astrophysics of Planet Formation. Cambridge University Press.

Ashurst, W. T., Chen, J. Y. & Rogers, M. M.
1987a
Pressure gradient alignment with strain rate and scalar gradient in simulated Navier–Stokes turbulence. Phys. Fluids
30 (10), 3293–3294.

Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H.
1987b
Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids
30 (8), 2343–2353.

Atkinson, C., Chumakov, S., Bermejo, M. I. & Soria, J.
2012
Lagrangian evolution of the invariants of the velocity gradient tensor in a turbulent boundary layer. Phys. Fluids
24 (10), 105104.

Bechlars, P. & Sandberg, R. D.
2017a
Evolution of the velocity gradient tensor invariant dynamics in a turbulent boundary layer. J. Fluid Mech.
815, 223–242.

Bechlars, P. & Sandberg, R. D.
2017b
Variation of enstrophy production and strain rotation relation in a turbulent boundary layer. J. Fluid Mech.
812, 321–348.

Bhatnagar, A., Gupta, A., Mitra, D., Pandit, R. & Perlekar, P.
2016
How long do particles spend in vortical regions in turbulent flows?
Phys. Rev. E
94 (5), 1–8.

Biferale, L. & Toschi, F.
2005
Joint statistics of acceleration and vorticity in fully developed turbulence. J. Turbul.
6, N40.

Buxton, O. R. H. & Ganapathisubramani, B.
2010
Amplification of enstrophy in the far field of an axisymmetric turbulent jet. J. Fluid Mech.
651, 483502.

Cantwell, B. J.
1992
Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids A
4 (4), 782–793.

Cantwell, B. J.
1993
On the behavior of velocity gradient tensor invariants in direct numerical simulations of turbulence. Phys. Fluids A
5 (8), 2008–2013.

Cantwell, B. J. & Coles, D.
1983
An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech.
136, 321–374.

Chevillard, L. & Meneveau, C.
2006
Lagrangian dynamics and statistical geometric structure of turbulence. Phys. Rev. Lett.
97 (17), 174501.

Chevillard, L. & Meneveau, C.
2011
Lagrangian time correlations of vorticity alignments in isotropic turbulence: observations and model predictions. Phys. Fluids
23 (10), 101704.

Chevillard, L., Meneveau, C., Biferale, L. & Toschi, F.
2008
Modeling the pressure Hessian and viscous Laplacian in turbulence: comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys. Fluids
20 (10), 101504.

Chong, M. S., Perry, A. E. & Cantwell, B. J.
1990
A general classification of three-dimensional flow fields. Phys. Fluids A
2 (5), 765–777.

Chu, Y. B. & Lu, X. Y.
2013
Topological evolution in compressible turbulent boundary layers. J. Fluid Mech.
733, 414–438.

Danish, M., Sinha, S. S. & Srinivasan, B.
2016a
Influence of compressibility on the lagrangian statistics of vorticity–strain-rate interactions. Phys. Rev. E
94 (1), 013101.

Danish, M., Suman, S. & Girimaji, S. S.
2016b
Influence of flow topology and dilatation on scalar mixing in compressible turbulence. J. Fluid Mech.
793, 633–655.

Elghobashi, S. & Truesdell, G. C.
1992
Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech.
242, 655–700.

Elsinga, G. E. & Marusic, I.
2010
Evolution and lifetimes of flow topology in a turbulent boundary layer. Phys. Fluids
22 (1), 015102.

Falkovich, G., Fouxon, A. & Stepanov, M. G.
2002
Acceleration of rain initiation by cloud turbulence. Nature
419 (6903), 151.

Girimaji, S. S. & Pope, S. B.
1990a
A diffusion model for velocity gradients in turbulence. Phys. Fluids A
2 (2), 242–256.

Girimaji, S. S. & Pope, S. B.
1990b
Material-element deformation in isotropic turbulence. J. Fluid Mech.
220, 427–458.

Girimaji, S. S. & Speziale, C. G.
1995
A modified restricted Euler equation for turbulent flows with mean velocity gradients. Phys. Fluids
7 (6), 1438–1446.

Kerimo, J. & Girimaji, S. S.
2007
Boltzmann–BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods. J. Turbul.
8 (46), 1–16.

Kumar, G., Girimaji, S. S. & Kerimo, J.
2013
WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence. J. Comput. Phys.
234, 499–523.

Liao, W., Peng, Y. & Luo, L. S.
2009
Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence. Phys. Rev. E
80 (4), 046702.

Lüthi, B., Tsinober, A. & Kinzelbach, W.
2005
Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech.
528, 87–118.

Martín, J., Ooi, A., Chong, M. S. & Soria, J.
1998
Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Phys. Fluids
10, 2336–2346.

Martín, M. P., Taylor, E. M., Wu, M. & Weirs, V. G.
2006
A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys.
220 (1), 270–289.

Meneveau, C.
2011
Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech.
43, 219–245.

Ohkitani, K.
1993
Eigenvalue problems in three-dimensional Euler flows. Phys. Fluids A
5 (10), 2570–2572.

O’Neill, P. & Soria, J.
2005
The relationship between the topological structures in turbulent flow and the distribution of a passive scalar with an imposed mean gradient. Fluid Dyn. Res.
36 (3), 107–120.

Ooi, A., Martin, J., Soria, J. & Chong, M. S.
1999
A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech.
381, 141–174.

Parashar, N., Sinha, S. S., Danish, M. & Srinivasan, B.
2017a
Lagrangian investigations of vorticity dynamics in compressible turbulence. Phys. Fluids
29 (10), 105110.

Parashar, N., Sinha, S. S., Srinivasan, B. & Manish, A.
2017b
GPU-accelerated direct numerical simulations of decaying compressible turbulence employing a GKM–based solver. Intl J. Numer. Meth. Fluids
83 (10), 737–754.

Pater, I. D. & Lissauer, J. J.
2015
Planetary Sciences. Cambridge University Press.

Pinsky, M. B. & Khain, A. P.
1997
Turbulence effects on droplet growth and size distribution in clouds-A review. J. Aerosol Sci.
28 (7), 1177–1214.

Pirozzoli, S. & Grasso, F.
2004
Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys. Fluids
16 (12), 4386–4407.

Pope, S. B.
2000
Turbulent Flows, pp. 483–489. Cambridge University Press.

Pope, S. B.
2002
Stochastic Lagrangian models of velocity in homogeneous turbulent shear flow. Phys. Fluids
14 (5), 1696–1702.

Pumir, A.
1994
A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient. Phys. Fluids
6 (6), 2118–2132.

Samtaney, R., Pullin, D. I. & Kosovic, B.
2001
Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids
13 (5), 1415–1430.

Sarkar, S., Erlebacher, G. & Hussaini, M. Y.
1991
Direct simulation of compressible turbulence in a shear flow. Theor. Comp. Fluid Dyn.
2 (5-6), 291–305.

da Silva, C. B. & Pereira, J. C. F.
2008
Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids
20 (5), 55101.

Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, A. E.
1994
A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids
6 (2), 871–884.

Suman, S. & Girimaji, S. S.
2009
Homogenized Euler equation: a model for compressible velocity gradient dynamics. J. Fluid Mech.
620, 177–194.

Suman, S. & Girimaji, S. S.
2010
Velocity gradient invariants and local flow-field topology in compressible turbulence. J. Turbul.
11 (2), 1–24.

Suman, S. & Girimaji, S. S.
2012
Velocity-gradient dynamics in compressible turbulence: influence of Mach number and dilatation rate. J. Turbul.
13 (8), 1–23.

Toschi, F., Biferale, L., Boffetta, G., Celani, A., Devenish, B. J. & Lanotte, A.
2005
Acceleration and vortex filaments in turbulence. J. Turbul.
6, N15.

Vaghefi, N. S. & Madnia, C. K.
2015
Local flow topology and velocity gradient invariants in compressible turbulent mixing layer. J. Fluid Mech.
774, 67–94.

Vieillefosse, P.
1982
Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys.
43 (6), 837–842.

Wang, L. & Lu, X. Y.
2012
Flow topology in compressible turbulent boundary layer. J. Fluid Mech.
703, 255–278.

Wilczek, M. & Meneveau, C.
2014
Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. J. Fluid Mech.
756, 191–225.

Xu, H., Pumir, A. & Bodenschatz, E.
2011
The pirouette effect in turbulent flows. Nature Phys.
7 (9), 709–712.

Xu, K.
2001
A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys.
171 (1), 289–335.

Yeung, P. K. & Pope, S. B.
1988
An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys.
79 (2), 373–416.

Yeung, P. K. & Pope, S. B.
1989
Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech.
207, 531–586.

Zhou, Y., Nagata, K., Sakai, Y., Ito, Y. & Hayase, T.
2015
On the evolution of the invariants of the velocity gradient tensor in single-square-grid-generated turbulence. Phys. Fluids
27 (7), 075107.