Skip to main content Accessibility help

Laboratory recreation of the Draupner wave and the role of breaking in crossing seas

  • M. L. McAllister (a1), S. Draycott (a2), T. A. A. Adcock (a1), P. H. Taylor (a1) (a3) and T. S. van den Bremer (a1)...


Freak or rogue waves are so called because of their unexpectedly large size relative to the population of smaller waves in which they occur. The 25.6 m high Draupner wave, observed in a sea state with a significant wave height of 12 m, was one of the first confirmed field measurements of a freak wave. The physical mechanisms that give rise to freak waves such as the Draupner wave are still contentious. Through physical experiments carried out in a circular wave tank, we attempt to recreate the freak wave measured at the Draupner platform and gain an understanding of the directional conditions capable of supporting such a large and steep wave. Herein, we recreate the full scaled crest amplitude and profile of the Draupner wave, including bound set-up. We find that the onset and type of wave breaking play a significant role and differ significantly for crossing and non-crossing waves. Crucially, breaking becomes less crest-amplitude limiting for sufficiently large crossing angles and involves the formation of near-vertical jets. In our experiments, we were only able to reproduce the scaled crest and total wave height of the wave measured at the Draupner platform for conditions where two wave systems cross at a large angle.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Laboratory recreation of the Draupner wave and the role of breaking in crossing seas
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Laboratory recreation of the Draupner wave and the role of breaking in crossing seas
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Laboratory recreation of the Draupner wave and the role of breaking in crossing seas
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence:


Hide All
Adcock, T. A. A. & Taylor, P. H. 2014 The physics of anomalous (‘rogue’) ocean waves. Rep. Prog. Phys. 465, 33613381.
Adcock, T. A. A., Taylor, P. H., Yan, S., Ma, Q. W. & Janssen, P. A. E. M. 2011 Did the Draupner wave occur in a crossing sea? Proc. R. Soc. Lond. A 467, 30043021.
Babanin, A. V., Waseda, T., Kinoshita, T. & Toffoli, A. 2011 Wave breaking in directional field. J. Phys. Oceanogr. 41, 145156.
Baldock, T. E., Swan, C. & Taylor, P. H. 1996 A laboratory study of nonlinear surface waves on water. Phil. Trans. R. Soc. Lond. A 354, 649676.
Barthelemy, X., Banner, M. L., Peirson, W. L., Fedele, F., Allis, M. & Dias, F. 2018 On a unified breaking onset threshold for gravity waves in deep and intermediate depth water. J. Fluid Mech. 841, 463488.
Boccotti, P., Barbaro, G., Fiamma, V., Mannino, L. & Rotta, A. 1993 An experiment at sea on the reflection of the wind waves. Ocean Engng 20, 493507.
Cavaleri, L., Barbariol, L. F., Benetazzo, A., Bertotti, L., Bidlot, J. R., Janssen, P. A. E. M. & Wedi, N. 2016 The Draupner wave: a fresh look and the emerging view. J. Geophys. Res. Oceans 128, 60616075.
Cavaleri, L., Bertotti, L., Torrisi, L., Bitner-Gregersen, E., Serio, M. & Onorato, M. 2012 Rogue waves in crossing seas: The Louis Majesty accident. J. Geophys. Res. 117 (C11), C00J10.
Christou, M. & Ewans, K. 2014 Field measurements of rogue water waves. J. Phys. Oceanogr. 44, 23172335.
Christou, M., Tromans, P., Vanderschuren, L. & Ewans, K. 2009 Second-order crest statistics of realistic sea states. In Proc. of the 11th Int. Workshop on Wave Hindcasting and Forecasting, Halifax, Canada, pp. 1823. Available at:
Clauss, G. F. & Klein, M. 2009 The New Year wave: spatial evolution of an extreme sea state. J. Offshore Mech. Arctic Engng 131, 041001.
Clauss, G. F. & Klein, M. 2011 The new year wave in a seakeeping basin: generation, propagation, kinematics and dynamics. Ocean Engng 38, 16241639.
Cokelet, E. D. 1977 Breaking waves. Nature 267, 769774.
Dalzell, J. F. 1999 A note on finite depth second-order wave–wave interactions. App. Ocean Res. 21, 105111.
Draycott, S., Davey, T., Ingram, D. M., Day, A. & Johanning, L. 2016 The SPAIR method: isolating incident and reflected directional wave spectra in multidirectional wave basins. Coast. Engng 114, 265283.
Dysthe, K. B., Müller, H. E. & Krogstad, P. 2008 Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287310.
Fedele, F., Brennan, J., De León, S. P., Dudley, J. & Dias, F. 2016 Real world ocean rogue waves explained without the modulational instability. Sci. Rep. 6, 27715.
Fitzgerald, C. J., Taylor, P. H., Eatock Taylor, R., Grice, J. & Zang, J. 2014 Phase manipulation and the harmonic components of ringing forces on a surface-piercing column. Proc. R. Soc. Lond. A 470, 20130847.
Flanagan, J. D., Dias, F., Terray, E., Strong, B. & Dudley, J. 2016 Extreme water waves off the west coast of Ireland: analysis of ADCP measurements. In The 26th International Ocean and Polar Engineering Conference, p. ISOPE–I–16–589. International Society of Offshore and Polar Engineers.
Forristall, G. Z. 2000 Wave crest distributions: Observations and second-order theory. J. Phys. Oceanogr. 30, 19311943.
van Groesen, E., Turnip, P. & Kurnia, R. 2017 High waves in Draupner seas part 1: numerical simulations and characterization of the seas. J. Ocean Engng Mar. Energy 3, 20160159.
Hansteen, O. E., Jostad, H. P. & Tjelta, T. I. 2003 Observed platform response to a ‘monster’ wave. In Field Measurements in Geomechanics, Oslo, Norway, pp. 1518. A. A. Balkema.
Hasselmann, K. 1962 On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech. 12, 481500.
Hasselmann, K. et al. 1973 Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). In Ergänzungsheft, pp. 812. Deutches Hydrographisches Institut.
Haver, S. 2004 A possible freak wave event measured at the Draupner jacket January 1 1995. In Rogue Waves Workshop, pp. 18. Brest.
Herbers, T. H. C., Elgar, S. & Guza, R. T. 1994 Infragravity-frequency (0.005–0.05 Hz) motions on the shelf. Part I. Forced waves. J. Phys. Oceanogr. 24, 917927.
Janssen, P. A. E. M. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33, 863884.
Janssen, P. A. E. M.2015 How rare is the Draupner Wave Event? ECMWF Tech. Memo. 775. European Centre for Medium-Range Weather Forecasts.
Kharif, C. & Pelinovsky, E. 2003 Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. (B/Fluids) 22, 603634.
Latheef, M., Swan, C. & Spinneken, J. 2017 A laboratory study of nonlinear changes in the directionality of extreme seas. Proc. R. Soc. Lond. A 473, 20160290.
Longuet-Higgins, M. S. 1983 Bubbles, breaking waves and hyperbolic jets at a free surface. J. Fluid Mech. 127, 103121.
Longuet-Higgins, M. S. 2001 Vertical jets from standing waves. Proc. R. Soc. Lond. A 457, 495510.
Longuet-Higgins, M. S. & Dommermuth, D. G. 2001 Vertical jets from standing waves II. Proc. R. Soc. Lond. A 457, 21372149.
Magnusson, A. K. & Donelan, M. A. 2013 The Andrea wave characteristics of a measured North Sea rogue wave. J. Offshore Mech. Arctic Engng 135, 031108.
Mai, T., Greaves, D. M., Raby, A. C. & Taylor, P. H. 2016 Physical modelling of wave scattering around fixed FPSO-shaped bodies. App. Ocean Res. 61, 115129.
McAllister, M. L., Adcock, T. A. A., Taylor, P. H. & van den Bremer, T. S. 2018 The set-down and set-up of directionally spread and crossing surface gravity wave groups. J. Fluid Mech. 835, 131169.
Michell, J. H. 1893 The highest waves in water. Lond. Edinb. Dublin Phil. Mag. J. Sci. 36, 430437.
Nepf, H. M., Wu, C. H. & Chan, E. S. 1998 A comparison of two-and three-dimensional wave breaking. J. Phys. Oceanogr. 28, 14961510.
Okihiro, M., Guza, R. T. & Seymour, R. J. 1992 Bound infra-gravity waves. J. Geophys. Res. 97, 453469.
Onorato, M., Osborne, A. R. & Serio, M. 2006 Modulational instability in crossing sea states: a possible mechanism for the formation of freak waves. Phys. Rev. Lett. 96, 014503.
Onorato, M., Residori, S., Bortolozzo, U., Montina, A. & Arecchi, F. T. 2013 Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 4789.
Onorato, M., Waseda, T., Toffoli, A., Cavaleri, L., Gramstad, O., Janssen, P. A. E. M., Kinoshita, T., Monbaliu, J., Mori, N. A. R., Osborne, A. R., Serio, M., Stansberg, C. T., Tamura, H. & Trulsen, K. 2009 Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys. Rev. Lett. 102, 114502.
Peregrine, D. H. 2003 Water-wave impact on walls. Annu. Rev. Fluid Mech. 35, 2343.
Perlin, M., Choi, W. & Tian, Z. 2013 Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech. 45, 115145.
Rapp, R. J. & Melville, W. K. 1990 Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond. A 331, 735800.
Saket, A., Peirson, W. L., Banner, M. L., Barthelemy, X. & Allis, M. J. 2017 On the threshold for wave breaking of two-dimensional deep water wave groups in the absence and presence of wind. J. Fluid Mech. 811, 642658.
Santo, H., Taylor, P. H., Eatock Taylor, R. & Choo, Y. S. 2013 Average properties of the largest waves in Hurricane Camille. J. Offshore Mech. Arctic Engng 135, 011602.
Sharma, J. N. & Dean, R. G. 1981 Second-order directional seas and associated wave forces. Soc. Petrol. Engng J. 21, 129140.
She, K., Greated, C. A. & Easson, W. J. 1994 Experimental study of three-dimensional wave breaking. ASCE J. Waterway Port Coastal Ocean Engng 120, 2036.
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441455.
Tian, Z., Perlin, M. & Choi, W. 2008 Evaluation of a deep-water wave breaking criterion. Phys. Fluids 20, 066604.
Toffoli, A., Babanin, A. V., Donelan, M. A., Haus, B. K. & Jeong, D. 2011a Estimating sea spray volume with a laser altimeter. J. Atmos. Ocean. Tech. 28, 11771183.
Toffoli, A., Bitner-Gregersen, E. M., Osborne, A. R., Serio, M., Monbaliu, J. & Onorato, M. 2011b Extreme waves in random crossing seas: laboratory experiments and numerical simulations. Geophys. Res. Lett. 38, L06605.
Toffoli, A., Monbaliu, J., Onorato, M., Osborne, A. R., Babanin, A. V. & Bitner-Gregersen, E. M. 2007 Second-order theory and setup in surface gravity waves: a comparison with experimental data. J. Phys. Oceanogr. 37, 27262739.
Toffoli, A., Onorato, M. & Monbaliu, J. 2006 Wave statistics in unimodal and bimodal seas from a second-order model. Eur. J. Mech. (B/Fluids) 25 (5), 649661.
Tulin, M. P. 1996 Breaking of ocean waves and downshifting. In Waves and Nonlinear Processes in Hydrodynamics. Fluid Mechanics and Its Applications, vol. 34. Springer.
Walker, D. A. G., Taylor, P. H. & Eatock Taylor, R. 2004 The shape of large surface waves on the open sea and the Draupner New Year wave. App. Ocean Res. 26, 7383.
Waseda, T., Kinoshita, T. & Tamura, H. 2009 Interplay of resonant and quasi-resonant interaction of the directional ocean waves. J. Phys. Oceanogr. 39, 23512362.
Wu, C. H. & Yao, A. 2004 Laboratory measurements of limiting freak waves on currents. J. Geophys. Res. 109, C12.
Yan, S. & Ma, Q. W. 2010 QALE-FEM for modelling 3D overturning waves. Intl J. Numer. Meth. Fluids 63, 743768.
Yao, A. & Wu, C. H. 2006 Spatial and temporal characteristics of transient extreme wave profiles on depth-varying currents. J. Engng Mech. 132, 10151025.
Zeff, B. W., Kleber, B., Fineberg, J. & Lathrop, D. P. 2000 Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403, 401404.
Zhao, W., Wolgamot, H. A., Taylor, P. H. & Eatock Taylor, R. 2017 Gap resonance and higher harmonics driven by focused transient wave groups. J. Fluid Mech. 812, 905939.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed