Skip to main content Accessibility help
×
Home

Kelvin–Helmholtz billows above Richardson number $1/4$

  • J. P. Parker (a1), C. P. Caulfield (a1) (a2) and R. R. Kerswell (a1)

Abstract

We study the dynamical system of a two-dimensional, forced, stratified mixing layer at finite Reynolds number $Re$ , and Prandtl number $Pr=1$ . We consider a hyperbolic tangent background velocity profile in the two cases of hyperbolic tangent and uniform background buoyancy stratifications, in a domain of fixed, finite width and height. The system is forced in such a way that these background profiles are a steady solution of the governing equations. As is well known, if the minimum gradient Richardson number of the flow, $Ri_{m}$ , is less than a certain critical value $Ri_{c}$ , the flow is linearly unstable to Kelvin–Helmholtz instability in both cases. Using Newton–Krylov iteration, we find steady, two-dimensional, finite-amplitude elliptical vortex structures – i.e. ‘Kelvin–Helmholtz billows’ – existing above $Ri_{c}$ . Bifurcation diagrams are produced using branch continuation, and we explore how these diagrams change with varying $Re$ . In particular, when $Re$ is sufficiently high we find that finite-amplitude Kelvin–Helmholtz billows exist when $Ri_{m}>1/4$ for the background flow, which is linearly stable by the Miles–Howard theorem. For the uniform background stratification, we give a simple explanation of the dynamical system, showing the dynamics can be understood on a two-dimensional manifold embedded in state space, and demonstrate the cases in which the system is bistable. In the case of a hyperbolic tangent stratification, we also describe a new, slow-growing, linear instability of the background profiles at finite $Re$ , which complicates the dynamics.

Copyright

Corresponding author

Email address for correspondence: jeremy.parker@damtp.cam.ac.uk

References

Hide All
Brown, S. N., Rosen, A. S. & Maslowe, S. A. 1981 The evolution of a quasi-steady critical layer in a stratified viscous shear layer. Proc. R. Soc. Lond. A 375 (1761), 271293.
Chandler, G. J. & Kerswell, R. R. 2013 Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554595.
Churilov, S. M. & Shukhman, I. G. 1987 Nonlinear stability of a stratified shear flow: a viscous critical layer. J. Fluid Mech. 180, 120.10.1017/S0022112087001708
Defina, A., Lanzoni, S. & Susin, F. M. 1999 Stability of a stratified viscous shear flow in a tilted tube. Phys. Fluids 11 (2), 344355.
Dijkstra, H. A., Wubs, F. W., Cliffe, A. K., Doedel, E., Dragomirescu, I. F., Eckhardt, B., Gelfgat, A. Y., Hazel, A. L., Lucarini, V., Salinger, A. G. et al. 2014 Numerical bifurcation methods and their application to fluid dynamics: Analysis beyond simulation. Commun. Comput. Phys. 15 (1), 145.
Drazin, P. G. 1958 The stability of a shear layer in an unbounded heterogeneous inviscid fluid. J. Fluid Mech. 4 (2), 214224.
Edwards, W. S., Tuckerman, L. S., Friesner, R. A. & Sorensen, D. C. 1994 Krylov methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 110 (1), 82102.
Haines, P. E., Hewitt, R. E. & Hazel, A. L. 2011 The Jeffery–Hamel similarity solution and its relation to flow in a diverging channel. J. Fluid Mech. 687, 404430.
Hazel, P. 1972 Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech. 51 (1), 3961.
Holmboe, J.1960 Unpublished lecture notes.
Howard, L. N. 1961 Note on a paper of John W. Miles. J. Fluid Mech. 10 (4), 509512.
Howland, C. J., Taylor, J. R. & Caulfield, C. P. 2018 Testing linear marginal stability in stratified shear layers. J. Fluid Mech. 839, R4.
Kaminski, A. K., Caulfield, C. P. & Taylor, J. R. 2014 Transient growth in strongly stratified shear layers. J. Fluid Mech. 758, R4.
Kaminski, A. K., Caulfield, C. P. & Taylor, J. R. 2017 Nonlinear evolution of linear optimal perturbations of strongly stratified shear layers. J. Fluid Mech. 825, 213244.
Keller, H. B. 1977 Numerical solution of bifurcation and nonlinear eigenvalue problems. In Applications of Bifurcation Theory (ed. Rabinowitz, P. H.), pp. 359384. Academic Press.
Klaassen, G. P. & Peltier, W. R. 1985 Evolution of finite amplitude Kelvin–Helmholtz billows in two spatial dimensions. J. Atmos. Sci. 42 (12), 13211339.
Lott, F. & Teitelbaum, H. 1992 Nonlinear dissipative critical level interaction in a stratified shear flow: instabilities and gravity waves. Geophys. Astrophys. Fluid Dyn. 66 (1–4), 133167.
Mallier, R. 2003 Stuart vortices in a stratified mixing layer: the Holmboe model. J. Engng. Maths. 47 (2), 121136.
Maslowe, S. A. 1973 Finite-amplitude Kelvin–Helmholtz billows. Boundary-Layer Meteorol. 5 (1), 4352.
Maslowe, S. A. 1977 Weakly nonlinear stability theory of stratified shear flows. Q. J. R. Meteorol. Soc. 103 (438), 769783.
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10 (4), 496508.
Miles, J. W. 1963 On the stability of heterogeneous shear flows. Part 2. J. Fluid Mech. 16 (2), 209227.
Miller, R. L. & Lindzen, R. S. 1988 Viscous destabilization of stratified shear flow for Ri > 1/4. Geophys. Astrophys. Fluid Dyn. 42 (1–2), 4991.
Mkhinini, N., Dubos, T. & Drobinski, P. 2013 On the nonlinear destabilization of stably stratified shear flow. J. Fluid Mech. 731, 443460.
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.
Net, M. & Sánchez, J. 2015 Continuation of bifurcations of periodic orbits for large-scale systems. SIAM J. Appl. Dyn. Syst. 14 (2), 674698.
Saad, Y. & Schultz, M. H. 1986 GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7 (3), 856869.
Salinger, A. G., Bou-Rabee, N. M., Burroughs, E. A., Pawlowski, R. P., Lehoucq, R. B., Romero, L. & Wilkes, E. D.2002 LOCA 1.0 Library of continuation algorithms: theory and implementation manual.
Sánchez, J. & Net, M. 2016 Numerical continuation methods for large-scale dissipative dynamical systems. Eur. Phys. J. Spec. Top. 225 (13), 24652486.
Smyth, W. D. & Carpenter, J. R. 2019 Instability in Geophysical Flows. Cambridge University Press.
Smyth, W. D., Nash, J. D. & Moum, J. N. 2019 Self-organized criticality in geophysical turbulence. Sci. Rep. 9 (1), 3747.
Smyth, W. D. & Peltier, W. R. 1991 Instability and transition in finite-amplitude Kelvin–Helmholtz and Holmboe waves. J. Fluid Mech. 228, 387415.
Strogatz, S. H. 2014 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. CRC Press.
Taylor, J. R.2008 Numerical simulations of the stratified oceanic bottom layer. PhD thesis.
Thorpe, S. A., Smyth, W. D. & Li, L. 2013 The effect of small viscosity and diffusivity on the marginal stability of stably stratified shear flows. J. Fluid Mech. 731, 461476.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Kelvin–Helmholtz billows above Richardson number $1/4$

  • J. P. Parker (a1), C. P. Caulfield (a1) (a2) and R. R. Kerswell (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed