Skip to main content Accessibility help
×
Home

Kazantsev model in non-helical 2.5-dimensional flows

  • K. Seshasayanan (a1) and A. Alexakis (a1)

Abstract

We study the dynamo instability for a Kazantsev–Kraichnan flow with three velocity components that depend only on two dimensions $\boldsymbol{u}=(u(x,y,t),v(x,y,t),w(x,y,t))$ often referred to as 2.5-dimensional (2.5-D) flow. Within the Kazantsev–Kraichnan framework we derive the governing equations for the second-order magnetic field correlation function and examine the growth rate of the dynamo instability as a function of the control parameters of the system. In particular we investigate the dynamo behaviour for large magnetic Reynolds numbers $Rm$ and flows close to being two-dimensional and show that these two limiting procedures do not commute. The energy spectra of the unstable modes are derived analytically and lead to power-law behaviour that differs from the three-dimensional and two-dimensional cases. The results of our analytical calculation are compared with the results of numerical simulations of dynamos driven by prescribed fluctuating flows as well as freely evolving turbulent flows, showing good agreement.

Copyright

Corresponding author

Email address for correspondence: skannabiran@lps.ens.fr

References

Hide All
Boldyrev, S. 2001 A solvable model for nonlinear mean field dynamo. Astrophys. J. 562 (2), 1081.
Boldyrev, S., Cattaneo, F. & Rosner, R. 2005 Magnetic-field generation in helical turbulence. Phys. Rev. Lett. 95 (25), 255001.
Boldyrev, S. A. & Schekochihin, A. A. 2000 Geometric properties of passive random advection. Phys. Rev. E 62 (1), 545.
Chatfield, C. 1989 The Analysis of Time Series an Introduction. Chapman and Hall.
Chertkov, M., Falkovich, G., Kolokolov, I. & Vergassola, M. 1999 Small-scale turbulent dynamo. Phys. Rev. Lett. 83 (20), 4065.
Falkovich, G., Gawdzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73 (4), 913.
Furutsu, K. 1963 On the statistical theory of electromagnetic waves in a fluctuating medium (i). J. Res. Natl Bur. Stand. 67D, 303.
Galloway, D. J. & Proctor, M. R. E. 1992 Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion. Nature 356, 691693.
Greiner, A., Strittmatter, W. & Honerkamp, J. 1988 Numerical integration of stochastic differential equations. J. Stat. Phys. 51 (1–2), 95108.
Iskakov, A. B., Schekochihin, A. A., Cowley, S. C., Mcwilliams, J. C. & Proctor, M. R. E. 2007 Numerical demonstration of fluctuation dynamo at low magnetic Prandtl numbers. Phys. Rev. Lett. 98 (20), 208501.
Kazantsev, A. P. 1968 Enhancement of a magnetic field by a conducting fluid. Sov. Phys. JETP 26 (5), 10311034.
Kolokolov, I.2016 Kinematic dynamo in two-dimensional chaotic flow: the initial and final stages. arXiv:1603:08771.
Kraichnan, R. H. 1968 Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11 (5), 945953.
Leprovost, N.2004, Influence des petites échelles sur la dynamique à grande échelle en turbulence hydro et magnétohydrodynamique. PhD thesis, Université Pierre et Marie Curie-Paris VI.
Malyshkin, L. M. & Boldyrev, S. 2010 Magnetic dynamo action at low magnetic Prandtl numbers. Phys. Rev. Lett. 105 (21), 215002.
Mason, J., Malyshkin, L., Boldyrev, S. & Cattaneo, F. 2011 Magnetic dynamo action in random flows with zero and finite correlation times. Astrophys. J. 730 (2), 86.
Novikov, E. A. 1965 Functionals and the random-force method in turbulence theory. Sov. Phys. JETP 20 (5), 12901294.
Novikov, V. G., Ruzmaikin, A. A. & Sokoloff, D. D. 1983 Kinematic dynamo in a reflection-invariant random field. Sov. Phys. JETP 58, 527532.
Oughton, S., Rädler, K. H. & Matthaeus, W. H. 1997 General second-rank correlation tensors for homogeneous magnetohydrodynamic turbulence. Phys. Rev. E 56 (3), 2875.
Proudman, J. 1916 On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. Lond. A 92 (642), 408424.
Roberts, G. O. 1972 Dynamo action of fluid motions with two-dimensional periodicity. Phil. Trans. R. Soc. 271 (1216), 411454.
Ruzmaikin, A. A. & Sokolov, D. D. 1981 The magnetic field in mirror-invariant turbulence. Sov. Astron. Lett. 7, 388390.
Schekochihin, A. A., Boldyrev, S. A. & Kulsrud, R. M. 2002 Spectra and growth rates of fluctuating magnetic fields in the kinematic dynamo theory with large magnetic Prandtl numbers. Astrophys. J. 567 (2), 828.
Schekochihin, A. A., Cowley, S. C., Taylor, S. F., Maron, J. L. & Mcwilliams, J. C. 2004 Simulations of the small-scale turbulent dynamo. Astrophys. J. 612 (1), 276.
Seshasayanan, K. & Alexakis, A. 2016 Turbulent 2.5-dimensional dynamos. J. Fluid Mech. 799, 246264.
Smith, S. G. L. & Tobias, S. M. 2004 Vortex dynamos. J. Fluid Mech. 498, 121.
Subramanian, K. 1999 Unified treatment of small-and large-scale dynamos in helical turbulence. Phys. Rev. Lett. 83 (15), 2957.
Taylor, Go. I. 1917 Motion of solids in fluids when the flow is not irrotational. Proc. R. Soc. Lond. A 93 (648), 99113.
Tobias, S. M. & Cattaneo, F. 2008 Dynamo action in complex flows: the quick and the fast. J. Fluid Mech. 601, 101122.
Vincenzi, D. 2002 The Kraichnan–Kazantsev dynamo. J. Stat. Phys. 106 (5–6), 10731091.
Zeldovich, Y. B. 1957 The magnetic field in the two-dimensional motion of a conducting turbulent fluid. Sov. Phys. JETP 4, 460462.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Kazantsev model in non-helical 2.5-dimensional flows

  • K. Seshasayanan (a1) and A. Alexakis (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed