Skip to main content Accessibility help

Katabatic flow along a differentially cooled sloping surface



Buoyancy inhomogeneities on sloping surfaces arise in numerous situations, for example, from variations in snow/ice cover, cloud cover, topographic shading, soil moisture, vegetation type, and land use. In this paper, the classical Prandtl model for one-dimensional flow of a viscous stably stratified fluid along a uniformly cooled sloping planar surface is extended to include the simplest type of surface inhomogeneity – a surface buoyancy that varies linearly down the slope. The inhomogeneity gives rise to acceleration, vertical motions associated with low-level convergence, and horizontal and vertical advection of perturbation buoyancy. Such processes are not accounted for in the classical Prandtl model. A similarity hypothesis appropriate for this inhomogeneous flow removes the along-slope dependence from the problem, and, in the steady state, reduces the Boussinesq equations of motion and thermodynamic energy to a set of coupled nonlinear ordinary differential equations. Asymptotic solutions for the velocity and buoyancy variables in the steady state, valid for large values of the slope-normal coordinate, are obtained for a Prandtl number of unity for pure katabatic flow with no ambient wind or externally imposed pressure gradient. The undetermined parameters in these solutions are adjusted to conform to lower boundary conditions of no-slip, impermeability and specified buoyancy. These solutions yield formulae for the boundary-layer thickness and slope-normal velocity component at the top of the boundary layer, and provide an upper bound of the along-slope surface-buoyancy gradient beyond which steady-state solutions do not exist. Although strictly valid for flow above the boundary layer, the steady asymptotic solutions are found to be in very good agreement with the terminal state of the numerical solution of an initial-value problem (suddenly applied surface buoyancy) throughout the flow domain. The numerical results also show that solution non-existence is associated with self-excitation of growing low-frequency gravity waves.



Hide All
Atkinson, B. W. 1995 Orographic and stability effects on valley-side drainage flows. Boundary- Layer Met. 75, 403428.
Ball, F. K. 1956 The theory of strong katabatic winds. Austral. J. Phys. 9, 373386.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Brazel, A. J., Fernando, H. J. S., Hunt, J. C. R., Selover, N., Hedquist, B. C. & Pardyjak, E. 2005 Evening transition observations in Phoenix, Arizona. J. Appl. Met. 44, 99112.
Bromwich, D. H., Cassano, J. J., Klein, T., Heinemann, G., Hines, K. M., Steffen, K. & Box, J. E. 2001 Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Weather Rev. 129, 22902309.
Cushman-Roisin, B. 1984 An exact analytical solution for a time-dependent, elliptical warm-core ring with outcropping interface. Ocean Modelling 59, 56.
Cushman-Roisin, B. 1987 Exact analytical solutions for elliptical vortices of the shallow-water equations. Tellus 39 A, 235244.
Cushman-Roisin, B., Heil, W. H. & Nof, D. 1985 Oscillations and rotations of elliptical warm-core rings. J. Geophys. Res. 90, 11 75611 764.
Defant, F. 1949 Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Met. Geophys. Bioklim. A 1, 421450.
Doran, J. C. & Horst, T. W. 1981 Velocity and temperature oscillations in drainage winds. J. Appl. Met. 20, 361364.
Doran, J. C. & Horst, T. W. 1983 Observations and models of simple nocturnal slope flows. J. Atmos. Sci. 40, 708717.
Elder, J. W. 1965 Laminar free convection in a vertical slot. J. Fluid Mech. 23, 7798.
Egger, J. 1981 On the linear two-dimensional theory of thermally induced slope winds. Beitr. Z. Phys. Atmos. 54, 465481.
Egger, J. 1985 Slope winds and the axisymmetric circulation over Antarctica. J. Atmos. Sci. 42, 18591867.
Fernando, H. J. S., Lee, S. M., Anderson, J., Princevac, M., Pardyjak, E. & Grossman-Clarke, S. 2001 Urban fluid mechanics: air circulation and contaminant dispersion in cities. Environ. Fluid Mech. 1, 107164.
Fiedler, B. H. 1999 Thermal convection in a layer bounded by uniform heat flux: application of a strongly nonlinear analytical solution. Geophys. Astrophys. Fluid Dyn. 91, 223250.
Fitzjarrald, D. R. 1984 Katabatic wind in opposing flow. J. Atmos. Sci. 41, 11431158.
Fletcher, C. A. J. 1988 Computational Techniques for Fluid Dynamics, vol. 1. Springer.
Gallee, H. & Schayes, G. 1994 Development of a 3-dimensional meso-γ primitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon. Weather Rev. 122, 671685.
Gill, A. E. 1966 The boundary layer regime for convection in a rectangular cavity. J. Fluid Mech. 26, 515536.
Grisogono, B. & Oerlemans, J. 2001 Analytic solution for gradually varying eddy diffusivities. J. Atmos. Sci. 58, 33493354.
Grisogono, B. & Oerlemans, J. 2002 Justifying the WKB approximation in pure katabatic flows. Tellus A 54, 453462.
Gutman, L. N. 1972 Introduction to the Nonlinear Theory of Mesoscale Meteorological Processes (Trans. from Russian). Israel Program for Scientific Translations, Jerusalem.
Gutman, L. N. 1983 On the theory of the katabatic slope wind. Tellus A 35, 213218.
Gutman, L. N. & Malbakhov, V. M. 1964 On the theory of katabatic winds of Antarctica. Met. Issled. 150–155.
Gutman, L. N. & Melgarejo, J. W. 1981 On the laws of geostrophic drag and heat transfer over a slightly inclined terrain. J. Atmos. Sci. 38, 17141724.
Haiden, T. & Whiteman, C. D. 2005 Katabatic flow mechanisms on a low-angle slope. J. Appl. Met. 44, 113126.
Heinemann, G. & Klein, T. 2002 Modelling and observations of the katabatic flow dynamics over Greenland. Tellus A 54, 542554.
Helmis, C. G. & Papadopoulos, K. H. 1996 Some aspects of the variation with time of katabatic flow over a simple slope. Q. J. R. Met. Soc. 122, 595610.
Hunt, J. C. R., Fernando, H. J. S. & Princevac, M. 2003 Unsteady thermally driven flows on gentle slopes. J. Atmos. Sci. 60, 21692182.
Imberger, J. & Patterson, J. C. 1990 Physical limnology. Adv. Appl. Mech. 27, 303475.
Klein, T., Heinemann, G., Bromwich, D. H., Cassano, J. J. & Hines, K. M. 2001 Mesoscale modeling of katabatic winds over Greenland and comparisons with AWS and aircraft data. Met. Atmos. Phys. 78, 115132.
Kondo, H. 1984 The difference of the slope wind between day and night. J. Met. Soc. Japan 62, 224233.
Lied, N. T. 1964 Stationary hydraulic jumps in a katabatic flow near Davis, Antarctica, 1961. Austral. Met. Mag. 47, 4051.
Lu, R. & Turco, R. P. 1994 Air pollutant transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects. J. Atmos. Sci. 51, 22852308.
Lykosov, V. N. & Gutman, L. N. 1972 Turbulent boundary layer above a sloping underlying surface. Izv. Acad. Sci. USSR, Atmos. Ocean. Phys. 8, 799809.
Madsen, O. S. 1977 A realistic model of the wind-induced Ekman boundary layer. J. Phys. Ocean. 7, 248255.
Manins, P. C. & Sawford, B. L. 1979 A model of katabatic winds. J. Atmos. Sci. 36, 619630.
Monti, P., Fernando, H. J. S., Princevac, M., Chan, W. C., Kowalewski, T. A. & Pardyjak, E. R. 2002 Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci. 59, 25132534.
Oerlemans, J. 1998 The atmospheric boundary layer over melting glaciers. Clear and Cloudy Boundary Layers (ed. Holtslag, A. A. M. & Duynkerke, P. G.), pp. 129153. Royal Netherlands Academy of Arts and Sciences.
Papadopoulos, K. H., Helmis, C. G., Soilemes, A. T., Kalogiros, J., Papageorgas, P. G. & Asimakopoulos, D. N. 1997 The structure of katabatic flows down a simple slope. Q. J. R. Met. Soc. 123, 15811601.
Parish, T. R. 1984 A numerical study of strong katabatic winds over Antarctica. Mon. Weather Rev. 112, 545554.
Parish, T. R. & Waight, K. T. 1987 The forcing of antarctic katabatic winds. Mon. Weather Rev. 115, 22142226.
Peacock, T., Stocker, R. & Aristoff, M. 2004 An experimental investigation of the angular dependence of diffusion-driven flow. Phys. Fluids 16, 35033505.
Pettré, P. & André, J.-C. 1991 Surface-pressure change through Loewe's phenomena and katabatic flow jumps: study of two cases in Adélie Land, Antarctica. J. Atmos. Sci. 48, 557571.
Phillips, O. M. 1970 On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res. 17, 435443.
Prandtl, L. 1942 Führer durch die Strömungslehre. Vieweg, Braunschweig.
Renfrew, I. A. 2004 The dynamics of idealized katabatic flow over a moderate slope and ice shelf. Q. J. R. Met. Soc. 130, 10231045.
Schlichting, H. 1979 Boundary-Layer Theory. McGraw-Hill.
Shapiro, A. 1996 Nonlinear shallow-water oscillations in a parabolic channel: exact solutions and trajectory analyses. J. Fluid Mech. 318, 4976.
Shapiro, A. 2001 A centrifugal wave solution of the Euler and Navier–Stokes equations. Z. Angew. Math. Phys. 52, 913923.
Shapiro, A. & Fedorovich, E. 2004 Unsteady convectively driven flow along a vertical plate immersed in a stably stratified fluid. J. Fluid Mech. 498, 333352.
Skyllingstad, E. D. 2003 Large-eddy simulation of katabatic flows. Boundary-Layer Met. 106, 217243.
Stone, G. L. & Hoard, D. E. 1989 Low-frequency velocity and temperature fluctuations in katabatic valley flows. J. Appl. Met. 28, 477488.
Thacker, W. C. 1981 Some exact solutions to the nonlinear shallow-water wave equations. J. Fluid Mech. 107, 499508.
Tyson, P. D. 1968 Velocity fluctuations in the mountain wind. J. Atmos. Sci. 25, 381384.
Veronis, G. 1970 The analogy between rotating and stratified fluids. Annu. Rev. Fluid Mech. 2, 3766.
Wunsch, C. 1970 On oceanic boundary mixing. Deep-Sea Res. 17, 293301.
MathJax is a JavaScript display engine for mathematics. For more information see

Katabatic flow along a differentially cooled sloping surface



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed