Skip to main content Accessibility help

Jettable fluid space and jetting characteristics of a microprint head

  • Loke-Yuen Wong (a1), Guan-Hui Lim (a1) (a2), Thiha Ye (a1), F. B. Shanjeera Silva (a1), Jing-Mei Zhuo (a1), Rui-Qi Png (a1), Soo-Jin Chua (a2) and Peter K. H. Ho (a1)...


The influence of fluid droplet properties on the droplet-on-demand jetting of a Newtonian model fluid (water–isopropanol–ethylene glycol ternary system) has been studied. The composition of the fluid was adjusted to investigate how the Ohnesorge number ( $\mathit{Oh}$ ) influences droplet formation (morphology and speed) by a microfabricated short-channel shear-mode piezoelectric transducer. The fluid space for satellite-free single droplet formation was indeed found to be bound by upper and lower $\mathit{Oh}$ limits, but these shift approximately linearly with the piezo pulse voltage amplitude ${V}_{o} $ , which has a stronger influence on jetting characteristics than pulse length. Therefore the jettable fluid space can be depicted on a ${V}_{o} {{\ndash}}\mathit{Oh}$ diagram. Satellite-free droplets of the model fluid can be jetted over a wide $\mathit{Oh}$ range, at least 0.025 to 0.5 (corresponding to $Z= {\mathit{Oh}}^{\ensuremath{-} 1} $ of 40 to 2), by adjusting ${V}_{o} $ appropriately. Air drag was found to dominate droplet flight, as may be expected. This can be accurately modelled to yield droplet formation time, which turned out to be $20\text{{\ndash}} 30~\lrm{\ensuremath{\mu}} \mathrm{s} $ under a wide range of jetting conditions. The corresponding initial droplet speed was found to vary linearly with ${V}_{o} $ , with a fluid-dependent threshold but a fluid-independent slope, and a minimum speed of about $2~\mathrm{m} ~{\mathrm{s} }^{\ensuremath{-} 1} $ . This suggests the existence of iso-velocity lines that run substantially parallel to the lower jetting boundary in the ${V}_{o} {{\ndash}}\mathit{Oh}$ diagram.


Corresponding author

Email address for correspondence:


Hide All
Abraham, F. F. 1970 Functional dependence of drag coefficient of a sphere on Reynolds number. Phys. Fluids 13, 21942195.
Aernouts, T., Aleksandrov, T., Girotto, C., Genoe, J. & Poortmans, J. 2008 Polymer based organic solar cells using ink-jet printed active layers. Appl. Phys. Lett. 92, 033306.
Anto, B. T., Sivaramakrishnan, S., Chua, L. L. & Ho, P. K. H. 2010 Hydrophilic sparse ionic monolayer-protected metal nanoparticles: highly concentrated nano-Au and nano-Ag ‘inks’ that can be sintered to near-bulk conductivity at $150\hspace{0.167em} \textdegree \mathrm{C} $ . Adv. Funct. Mater. 20, 296303.
Arias, A. C., Ready, S. E., Lujan, R., Wong, W. S., Paul, K. E., Salleo, A., Chabinyc, M. L., Apte, R., Street, R. A., Wu, Y., Liu, P. & Ong, B. 2004 All jet-printed polymer thin-film transistor active-matrix backplanes. Appl. Phys. Lett. 85, 33043306.
Bale, M., Carter, J. C., Creighton, C. J., Gregory, H. J., Lyon, P. H., Ng, P., Webb, L. & Wehrum, A. 2006 Ink-jet printing: the route to production of full colour P-OLED displays. J. Soc. Info. Displ. 453459.
Berggren, M., Nilsson, D. & Robinson, N. D. 2006 Organic materials for printed electronics. Nature Mater. 6, 35.
Bibl, A., Chen, Z. & Birkmeyer, J. 2005 Print head with thin membrane. Patent (U.S.P.T.O.), 0099467.
Czyzewski, J., Burzynski, P., Gawel, K. & Meisner, J. 2009 Rapid prototyping of electrically conductive components using 3D printing technology. J. Mater. Process. Technol. 209, 52815285.
Dearden, A. L., Smith, P. J., Shin, D.-Y., Reis, N., Derby, B. & O’Brien, P. 2005 A low curing temperature silver ink for use in inkjet printing and subsequent production of conductive tracks. Macromol. Rapid Commun. 26, 315318.
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827829.
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 2000 Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756764.
Derby, B. 2010 Inkjet printing of functional and structural materials: fluid property requirements, feature stability and resolution. Annu. Rev. Mater. Res. 40, 395414.
Derby, B. & Reis, N. 2003 Inkjet printing of highly loaded particulate suspensions. MRS Bull. 28, 815818.
Dong, H. & Carr, W. W. 2006 Visualization of drop-on-demand inkjet: drop formation and deposition. Rev. Sci. Instrum. 77, 085101.
Dong, H., Carr, W. W. & Morris, J. F. 2006 An experimental study of drop-on-demand drop formation. Phys. Fluids 18, 072102.
Duineveld, P. C. 2003 The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J. Fluid Mech. 477, 175200.
Duineveld, P. C., de Kok, M. M., Buechel, M., Sempel, A. H., Mutsaers, K. A. H., van de Weijer, P., Camps, I. G. J., van den Biggelaar, T. J. M., Rubingh, J. E. J. M. & Haskal, E. I. 2002 Ink-jet printing of polymer light-emitting devices. Proc. SPIE 4464, 5967.
Fakhfouri, V., Mermoud, G., Kim, J. Y., Martinoli, A. & Brugger, J. 2009 Drop-on-demand inkjet printing of SU-8 polymer. Micro Nanosyst. 1, 6367.
Fromm, J. E. 1984 Numerical calculations of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28, 322333.
Fuller, S. B., Wilhelm, E. J. & Jacobson, J. M. 2002 Ink-jet printed nanoparticle microelectromechanical systems. J. Microelectromech. Syst. 11, 5460.
de Gans, B. J., Duineveld, P. C. & Schubert, U. S. 2004 Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16, 203213.
de Gans, B. J. & Schubert, U. S. 2004 Inkjet printing of well-defined polymer dots and arrays. Langmuir 20, 77897793.
Hoath, S. D., Hsiao, W.-K., Jung, S., Martin, G. D. & Hutchings, I. M. 2012 Drop speeds from drop-on-demand ink-jet print heads. J. Imaging Sci. Technol. (submitted).
Hoth, C. N., Schilinsky, P., Choulis, S. A. & Brabec, C. J. 2008 Printing highly efficient organic solar cells. Nano Lett. 8, 28062813.
Hu, H. & Larson, R. G. 2006 Maragoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110, 70907094.
Hughes, T. R., Mao, M., Jones, A. R., Burchard, J., Marton, M. J., Shannon, K. W., Lefkowitz, S. M., Ziman, M., Schelter, J. M., Meyer, M. R., Kobayashi, S., Davis, C., Dai, H. Y., He, Y. D. D., Stephaniants, S. B., Cavet, G., Walker, W. L., West, A., Coffey, E., Shoemaker, D. D., Stoughton, R., Blanchard, A. P., Friend, S. H. & Linsley, P. S. 2001 Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnol. 19, 342347.
Ikegawa, M. & Azuma, H. 2004 Droplet behaviours on substrates in thin-film formation using inkjet printing. JSME Intl J. B 47, 490496.
Jang, D., Kim, D. & Moon, J. 2009 Influence of fluid physical properties on inkjet printability. Langmuir 25, 26292635.
Kawase, T., Shimoda, T., Newsome, C., Sirringhaus, H. & Friend, R. H. 2003 Inkjet printing of polymer thin film transistors. Thin Solid Films 438–439, 279287.
Kobayashi, H., Kanbe, S., Seki, S., Kigchi, H., Kimura, M., Yudasaka, I., Miyashita, S., Shimoda, T., Towns, C. R., Burroughes, J. H. & Friend, R. H. 2000 A novel RGB multicolor light-emitting polymer display. Synth. Metals 111, 125128.
Kumar, S. & Kruth, J. P. 2010 Composites by rapid prototyping technology. Mater. Design 31, 850856.
Le Clair, B. P. & Hamielec, A. E. 1969 A numerical study of the drag on a sphere at low and intermediate Reynolds numbers. J. Atmos. Sci. 27, 308315.
Li, S. P., Newsome, C. J., Kugler, T., Ishida, M. & Inoue, S. 2007 Polymer thin film transistors with self-aligned gates fabricated using ink-jet printing. Appl. Phys. Lett. 90, 172103.
Martin, G. D., Hoath, S. D. & Hutchings, I. M. 2008 Inkjet printing – the physics of manipulating liquid jets and drops. J. Phys.: Conf. Ser. 105, 114.
Meier, H., Loffelmann, U., Mager, D., Smith, P. J. & Korvink, J. G. 2009 Inkjet printed, conductive $25~\lrm{\ensuremath{\mu}} \mathrm{m} $ wide silver tracks on unstructured polyimide. Phys. Status Solidi A 206, 16261630.
Mott, M., Song, J. H. & Evans, J. R. G. 1999 Microengineering of ceramics by direct ink-jet printing. J. Am. Ceram. Soc. 82, 16531658.
Nakamura, M., Kobayashi, A., Takagi, F., Watanabe, A., Hiruma, Y., Ohuchi, K., Iwasaki, Y., Horie, M., Morita, I. & Takatani, S. 2005 Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 11, 16581666.
Newman, J. D., Turner, A. P. F. & Marrazza, G. 1992 Ink-jet printing for the fabrication of amperometric glucose biosensors. Anal. Chim. Acta 262, 1317.
Noguera, R., Lejeune, M. & Chartier, T. 2005 3D fine scale ceramic components formed by ink-jet prototyping process. J. Eur. Ceram. Soc. 25, 20552059.
Notz, P. K. & Basaran, O. A. 2006 Dynamics and breakup of a contracting liquid filament. J. Fluid Mech. 512, 223256.
Osch, T. H. J., Perelaer, J., Laat, A. W. M. & Schubert, U. S. 2008 Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv. Mater. 20, 343345.
Perelaer, J., Smith, P. J., van den Bosch, E., van Grootel, S. S. C., Ketelaars, P. H. J. M. & Schubert, U. S. 2009 The spreading of inkjet-printed droplets with varying polymer molar mass on a dry solid substrate. Macromol. Chem. Phys. 210, 495502.
Reis, N., Ainsley, C. & Derby, B. 2005 Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J. Appl. Phys. 97, 094903.
Reis, N. & Derby, B. 2000 Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation. MRS Symp. Proc. 625, 117122.
Roth, E. A., Xu, T., Das, M., Gregory, C., Hickman, J. J. & Boland, T. 2004 Inkjet printing for high-throughput cell patterning. Biomaterials 25, 37073715.
Sachs, E., Cima, M., Williams, P., Brancazio, D. & Cornie, J. 1992 Three-dimensional printing: rapid tooling and prototypes directly from a CAD model. Trans. ASME: J. Engng Ind. 114, 481488.
Schiaffino, S. & Sonin, A. A. 1997a Formation and stability of liquid and molten beads on a solid surface. J. Fluid Mech. 343, 95110.
Schiaffino, S. & Sonin, A. A. 1997b Molten droplet deposition and solidification at low Weber numbers. Phys. Fluids 9, 31723187.
Shield, T. W., Bogy, D. B. & Talke, F. E. 1987 Drop formation by DOD inkjet nozzles: a comparison of experiment and numerical simulation. IBM J. Res. Dev. 31, 96.
Singh, M., Haverinen, H. M., Dhagat, P. & Jabbour, G. E. 2009 Inkjet printing-process and its applications. Adv. Mater. 22, 673685.
Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W. & Woo, E. P. 2000 High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 21232126.
Sivaramakrishnan, S., Chia, P. J., Yeo, Y. C., Chua, L. L. & Ho, P. K. H. 2007 Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters. Nature Mater. 6, 149155.
Soltman, D. & Subramanian, V. 2008 Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24, 22242231.
Son, Y., Kim, C., Yang, D. H. & Ahn, D. J. 2008 Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers. Langmuir 24, 29002907.
Wijshoff, H. 2010 The dynamics of the piezo inkjet printhead operation. Phys. Rep. 491, 77177.
Wong, L. Y., Png, R. Q., Silva, F. B. S., Chua, L. L., Repaka, D. V. M., Chen, S., Gao, X. Y., Ke, L., Chua, S. J., Wee, A. T. S. & Ho, P. K. H. 2010 Interplay of processing, morphological order, and charge-carrier mobility in polythiophene thin films deposited by different methods: comparison of spin-cast, drop-cast, and inkjet-printed films. Langmuir 26, 1549415507.
Xia, Y. & Friend, R. H. 2006 Polymer bilayer structure via inkjet printing. Appl. Phys. Lett. 88, 163508.
Xu, Q. & Basaran, O. A. 2007 Computational analysis of drop-on-demand drop formation. Phys. Fluids 19, 102111.
Xue, F., Liu, Z., Su, Y. & Varahramyan, K. 2006 Inkjet printed silver source/drain electrodes for low-cost polymer thin films transistors. Microelectron. Engng 83, 298302.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Jettable fluid space and jetting characteristics of a microprint head

  • Loke-Yuen Wong (a1), Guan-Hui Lim (a1) (a2), Thiha Ye (a1), F. B. Shanjeera Silva (a1), Jing-Mei Zhuo (a1), Rui-Qi Png (a1), Soo-Jin Chua (a2) and Peter K. H. Ho (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.