Skip to main content Accessibility help

Irregular self-similar configurations of shock-wave impingement on shear layers

  • Daniel Martínez-Ruiz (a1) (a2), César Huete (a1), Pedro J. Martínez-Ferrer (a3) and Daniel Mira (a3)


An oblique shock impinging on a shear layer that separates two uniform supersonic streams, of Mach numbers $M_{1}$ and $M_{2}$ , at an incident angle $\unicode[STIX]{x1D70E}_{i}$ can produce regular and irregular interactions with the interface. The region of existence of regular shock refractions with stable flow structures is delineated in the parametric space $(M_{1},M_{2},\unicode[STIX]{x1D70E}_{i})$ considering oblique-shock impingement on a supersonic vortex sheet of infinitesimal thickness. It is found that under supercritical conditions, the oblique shock fails to deflect both streams consistently and to provide balanced flow properties downstream. In this circumstance, the flow renders irregular configurations which, in the absence of characteristic length scales, exhibit self-similar pseudosteady behaviours. These cases involve shocks moving upstream at constant speed and increasing their intensity to comply with equilibrium requirements. Differences in the variation of propagation speed among the flows yield pseudosteady configurations that grow linearly with time. Supercritical conditions are described theoretically and reproduced numerically using highly resolved inviscid simulation.


Corresponding author

Email address for correspondence:


Hide All
Abd-El-Fattah, A. M., Henderson, L. F. & Lozzi, A. 1976 Precursor shock waves at a slow–fast gas interface. J. Fluid Mech. 76, 157176.10.1017/S0022112076003182
Abd-El-Fattah, A. M. & Henderson, L. F. 1978a Shock waves at a fast–slow gas interface. J. Fluid Mech. 86, 1532.10.1017/S0022112078000981
Abd-El-Fattah, A. M. & Henderson, L. F. 1978b Shock waves at a slow–fast gas interface. J. Fluid Mech. 89, 7995.10.1017/S0022112078002475
Adler, M. C. & Gaitonde, D. V. 2018 Dynamic linear response of a shock/turbulent-boundary-layer interaction using constrained perturbations. J. Fluid Mech. 840, 291341.10.1017/jfm.2018.70
Balsara, D. S. & Shu, C. W. 2000 Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 106, 405452.10.1006/jcph.2000.6443
Ben-Dor, G. 2007 Shock Wave Reflection Phenomena, vol. 2. Springer.
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445468.10.1146/annurev.fluid.34.090101.162238
Buttsworth, D. R. 1996 Interaction of oblique shock waves and planar mixing regions. J. Fluid Mech. 306, 4357.10.1017/S002211209600122X
Buttsworth, D. R., Morgan, R. G. & Jones, T. V. 1997 Experiments on oblique shock interactions with planar mixing regions. AIAA J. 35, 17741777.10.2514/2.26
Chaudhuri, A., Hadjadj, A., Chinnayya, A. & Palerm, S. 2011 Numerical study of compressible mixing layers using high-order WENO schemes. J. Sci. Comput. 47, 170197.10.1007/s10915-010-9429-3
Dewey, J. M. & McMillin, D. J. 1985a Observation and analysis of the Mach reflection of weak uniform plane shock waves. Part 1. Observations. J. Fluid Mech. 152, 4966.10.1017/S0022112085000568
Dewey, J. M. & McMillin, D. J. 1985b Observation and analysis of the Mach reflection of weak uniform plane shock waves. Part 2. Analysis. J. Fluid Mech. 152, 6781.10.1017/S002211208500057X
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA J. 39, 15171531.10.2514/2.1476
Estruch-Samper, D. & Chandola, G. 2018 Separated shear layer effect on shock-wave/turbulent-boundary-layer interaction unsteadiness. J. Fluid Mech. 848, 154192.10.1017/jfm.2018.350
Fang, X., Shen, C., Sun, M. & Hu, Z. 2018 Effects of oblique shock waves on turbulent structures and statistics of supersonic mixing layers. Phys. Fluids 30, 116101.10.1063/1.5051015
Fowles, G. 1981 Stimulated and spontaneous emission of acoustic waves from shock fronts. Phys. Fluids 24, 220227.10.1063/1.863369
Fu, S. & Li, Q. 2006 Numerical simulation of compressible mixing layers. Intl J. Heat Fluid Flow 27, 895901.10.1016/j.ijheatfluidflow.2006.03.028
Gottlieb, S. & Shu, C. W. 1998 Total variation diminishing Runge–Kutta schemes. Maths Comput. 67, 7385.10.1090/S0025-5718-98-00913-2
Grossman, I. J. & Bruce, P. J. 2018 Confinement effects on regular–irregular transition in shock-wave-boundary-layer interactions. J. Fluid Mech. 853, 174204.10.1017/jfm.2018.537
Gutmark, E. J., Schado, K. C. & Yu, K. H. 1995 Mixing enhancement in supersonic free shear flows. Annu. Rev. Fluid Mech. 27, 375417.10.1146/annurev.fl.27.010195.002111
Hayes, W. D. & Probstein, R. F. 2004 Hypersonic Inviscid Flow, 2nd edn. Dover.
Henderson, L. F. 1966 The refraction of a plane shock wave at a gas interface. J. Fluid Mech. 26, 607637.10.1017/S0022112066001435
Henderson, L. F. 1967 The reflexion of a shock wave at a rigid wall in the presence of a boundary layer. J. Fluid Mech. 30, 699722.10.1017/S0022112067001715
Henderson, L. F. & Macpherson, A. K. 1968 On the irregular refraction of plane shock wave at a Mach number interface. J. Fluid Mech. 32, 185202.10.1017/S0022112068000650
Henderson, L. F. & Menikoff, R. 1998 Triple-shock entropy theorem and its consequences. J. Fluid Mech. 366, 179210.10.1017/S0022112098001244
Hornung, H. 1986 Regular and Mach reflection of shock waves. Annu. Rev. Fluid Mech. 18, 3358.10.1146/annurev.fl.18.010186.000341
Huete, C., Sánchez, A. L. & Williams, F. A. 2017 Diffusion-flame ignition by shock-wave impingement on a hydrogen–air supersonic mixing layer. J. Propul. Power 33, 256263.10.2514/1.B36236
Huete, C., Sánchez, A. L., Williams, F. A. & Urzay, J. 2015 Diffusion-flame ignition by shock-wave impingement on a supersonic mixing layer. J. Fluid Mech. 784, 74108.10.1017/jfm.2015.585
Huete, C., Urzay, J., Sánchez, A. L. & Williams, F. A. 2016 Weak-shock interactions with transonic laminar mixing layers of fuels for high-speed propulsion. AIAA J. 54, 966979.10.2514/1.J054419
Jahn, R. G. 1956 The refraction of shock waves at a gaseous interface. J. Fluid Mech. 1, 457489.10.1017/S0022112056000299
Jammalamadaka, A., Li, Z. & Jaberi, F. 2014 Numerical investigations of shock wave interactions with a supersonic turbulent boundary layer. Phys. Fluids 26, 056101.10.1063/1.4873495
Jones, D. M., Martin, P. M. & Thornhill, C. K. 1951 A note on the pseudosteady flow behind a strong shock diffracted or reflected at a corner. Proc. R. Soc. Lond. A 209, 238248.
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. p. 423. Pergamon Press.
Laurence, S. J., Karl, S., Schramm, J., Martínez, J. & Hannemann, K. 2013 Transient fluid-combustion phenomena in a model scramjet. J. Fluid Mech. 722, 85120.10.1017/jfm.2013.56
Lighthill, M. J. 1953a On boundary layers and upstream influence. I. A comparison between subsonic and supersonic flows. Proc. R. Soc. Lond. A 217, 344357.
Lighthill, M. J. 1953b On boundary layers and upstream influence. II. Supersonic flows without separation. Proc. R. Soc. Lond. A 213, 478507.
Lu, P.J & Wu, K. C. 1991 On the shock enhancement of confined supersonic mixing flows. Phys. Fluids A 3, 30463062.10.1063/1.857849
Mach, E. 1878 Uber den Verlauf von Funkenwellen in der Ebene und im Raume. Sitz. ber. Akad. Wiss. Wien 78, 819838.
Mahle, I., Foysi, H., Sarkar, S. & Friedrich, R. 2007 On the turbulence structure in inert and reacting compressible mixing layers. J. Fluid Mech. 593, 171180.10.1017/S0022112007008919
Martínez-Ferrer, P. J., Buttay, R., Lehnasch, G. & Mura, A. 2014 A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solver. J. Comput. Fluids 89, 88110.10.1016/j.compfluid.2013.10.014
Martínez-Ferrer, P. J., Lehnasch, G. & Mura, A. 2017 Compressibility and heat release effects in high-speed reactive mixing layers I. Growth rates and turbulence characteristics. Combust. Flame 89, 284303.10.1016/j.combustflame.2016.09.008
Martínez-Ruiz, D., Huete, C., Sánchez, A. L. & Williams, F. A. 2018 Interaction of oblique shocks and laminar shear layers. AIAA J. 56, 10231030.10.2514/1.J056302
Menon, S.1989 Shock-wave-induced mixing enhancement in scramjet combustors. AIAA Paper 0104.10.2514/6.1989-104
Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.10.1007/BF01015969
Mikaelian, E. E. 1994 Oblique shocks and the combined Rayleigh–Taylor, Kelvin–Helmholtz, and Richtmyer–Meshkov instabilities. Phys. Fluids 6, 19431945.10.1063/1.868198
Nayfeh, A. H. 1991 Triple-deck structure. Comput. Fluids 20, 269292.10.1016/0045-7930(91)90044-I
von Neumann, J.1943a Oblique reflection of shocks. Explos. Res. Rep. 12, Navy Dept., Bureau of Ordinance, Washington, DC, USA.
von Neumann, J.1943b Refraction, intersection and reflection of shock waves. NAVORD Rep. 203-45, Navy Dept., Bureau of Ordinance, Washington, DC, USA.
Nishihara, K., Wouchuk, J. G., Matsuoka, C., Ishizaki, R. & Zhakhovsky, V. V. 2010 Richtmyer–Meshkov instability: theory of linear and nonlinear evolution. Phil. Trans. R. Soc. Lond. A 368, 17691807.10.1098/rsta.2009.0252
Pantano, C. & Sarkar, S. 2002 A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329371.10.1017/S0022112001006978
Pirozzoli, S. & Bernardini, M. 2011 Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 29, 13071312.10.2514/1.J050901
Quadros, R. & Bernardini, M. 2018 Numerical investigation of transitional shock-wave/boundary-layer interaction in supersonic regime. AIAA J. 56, 27122724.10.2514/1.J056650
Rao, S. M. V., Asano, S., Imani, I. & Saito, O. 2018 Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct. Shock Waves 28, 267283.10.1007/s00193-017-0722-z
Richtmyer, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13, 297319.10.1002/cpa.3160130207
Rikanati, A., Sadot, O., Ben-Dor, G., Shvarts, D., Kuribayashi, T. & Takayama, K. 2006 Shock-wave Mach-reflection slip-stream instability: a secondary small-scale turbulent mixing phenomenon. Phys. Rev. Lett. 96, 174503.10.1103/PhysRevLett.96.174503
Riley, N. 1960 Interaction of a shock wave with a mixing region. J. Fluid Mech. 7, 321339.10.1017/S0022112060000116
Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6, 903923.10.1063/1.868325
Rubidge, S. & Skews, B. 2014 Shear-layer instability in the Mach reflection of shock waves. Shock Waves 24, 479488.10.1007/s00193-014-0515-6
Samtaney, R. 1997 Computational methods for self-similar solutions of the compressible Euler equations. J. Comput. Phys. 132, 327345.10.1006/jcph.1996.5639
Samtaney, R. & Zabusky, N. J. 1993 On shock polar analysis and analytical expressions for vorticity deposition in shock-accelerated density-stratified interfaces. Phys. Fluids A 542, 105114.
Sandham, N. D. & Reynolds, W. C. 1989 Compressible mixing layer: linear theory and direct simulation. AIAA J. 28, 618624.10.2514/3.10437
Skews, B. W. & Ashworth, J. T. 2005 The physical nature of weak shock reflection. J. Fluid Mech. 542, 105114.10.1017/S0022112005006543
Skews, B. W., Li, G. & Platon, R. 2009 Experiments on Guderley Mach reflection. Shock Waves 19, 95105.10.1007/s00193-009-0193-y
Stanley, S. & Sarkar, S. 1997 Simulations of spatially developing two-dimensional shear layers and jets. Theor. Comput. Fluid Dyn. 9, 121147.10.1007/s001620050036
Sternberg, J. 1959 Triple-shock-wave intersections. Phys. Fluids 2, 179206.10.1063/1.1705909
Stewartson, K. & Williams, P. G. 1969 Self-induced separation. Proc. R. Soc. Lond. A 312, 181206.10.1098/rspa.1969.0148
Stull, D. R. & Prophet, H.1971 JANAF Thermochemical Tables, 2nd edn. NSRDS-NBS 37, U.S. Department of Commerce/National Bureau of Standards. National Bureau of Standards U.S.
Tesdall, A. M., Sanders, R. & Keyfit, B. L. 2008 Self-similar solutions for the triple-point paradox in gasdynamics. SIAM J. Appl. Maths 68, 13601377.10.1137/070698567
Tritarelli, R. C. & Kleiser, L. 2017 Vorticity-production mechanisms in shock/mixing-layer interaction problems. Shock Waves 27, 143152.10.1007/s00193-016-0636-1
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50, 593627.10.1146/annurev-fluid-122316-045217
Vasilev, E. I., Elperin, T. & Ben-Dor, G. 2008 Analytical reconsideration of the von Neumann paradox in the reflection of a shock wave over a wedge. Phys. Fluids 20, 046101.10.1063/1.2896286
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.
Wouchuk, J. G. 2001a Growth rate of the linear Richtmyer–Meshkov instability when a shock is reflected. Phys. Rev. E 63, 056303.
Wouchuk, J. G. 2001b Growth rate of the Richtmyer–Meshkov instability when a rarefaction is reflected. Phys. Plasmas 8, 28902907.10.1063/1.1369119
Xiong, B., Wang, Z. G. & Tao, Y. 2018 Analysis and modelling of unsteady shock train motions. J. Fluid Mech. 846, 240262.10.1017/jfm.2018.209
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed