Skip to main content Accessibility help

Internal wave generation by tidal flow over a two-dimensional ridge: energy flux asymmetries induced by a steady surface trapped current

  • Kevin G. Lamb (a1) and M. Dunphy (a2)


The effects of a surface trapped steady background current on internal waves generated by tidal currents oscillating over a small symmetric ridge are investigated using a two-dimensional primitive equation model. A rigid lid is used with a linearly stratified fluid and the effects of rotation are not considered. We consider uni-directional background currents $\bar{U}(z)\geqslant 0$ confined to a surface layer lying well above the ridge. The current introduces asymmetries in the generated wave field. For sufficiently narrow ridges the upstream energy flux is larger than the downstream flux while the opposite is the case for sufficiently wide ridges. The total energy flux radiating away from the ridge is not significantly affected by the current. Mean second-order currents and pressure fields are shown to make important contributions to the total energy flux. A first-order linear theory, valid for a general stratification and surface current, which accurately predicts the wave field is also developed.


Corresponding author

Email address for correspondence:


Hide All
Aiki, H., Matthews, J. P. & Lamb, K. G. 2011 Modeling and energetics of tidally generated wave trains in the Lombok Strait: impact of the Indonesian throughflow. J. Geophys. Res. 116, C03023.
Bell, J. B., Colella, P. & Glaz, H. M. 1989 A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85, 257283.
Bell, T. H. 1975a Lee waves in stratified flow with simple harmonic time dependence. J. Fluid Mech. 67, 705722.
Bell, T. H. 1975b Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320327.
Broutman, D., Rottman, J. W. & Eckermann, S. D. 2004 Ray methods for internal waves in the atmosphere and ocean. Annu. Rev. Fluid Mech. 36, 233253.
Buijsman, M. C., Ansong, J. K., Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., Wallcraft, A. J., Whalen, C. B. & Zhao, Z.-X. 2016 Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. J. Phys. Oceanogr. 46, 13991419.
Egbert, G. D. & Ray, R. D. 2001 Estimates of M 2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Oceanogr. 106, 24 821–24 852.
Falahat, S., Nycander, J., Roquet, F., Thurnherr, A. M. & Hibiya, T. 2014 Comparison of calculated energy flux of internal tides with microstructure measurements. Tellus A 66, 23240.
Ferrari, R., Mashayek, A., McDougall, T. J., Nikurashin, M. & Campin, J.-M. 2016 Turning ocean mixing upside down. J. Phys. Oceanogr. 46, 22392261.
Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.
Holliday, D. & McIntyre, M. E. 1981 On potential energy density in an incompressible, stratified fluid. J. Fluid Mech. 107, 221225.
Kelly, S. M., Nash, J. D. & Kunze, E. 2010 Internal-tide energy over topography. J. Geophys. Res. 115, C06014.
Khatiwala, S. 2003 Generation of internal tides in an ocean of finite depth: analytical and numerical calculations. Deep-Sea Res. I 50, 321.
Lamb, K. G. 1994 Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. J. Geophys. Res. 99, 843864.
Lamb, K. G. 2007 Energy and pseudoenergy flux in the internal wave field generated by tidal flow over topography. Cont. Shelf Res. 27, 12081232.
Lamb, K. G. 2008 On the calculation of the available potential energy of an isolated perturbation in a density-stratified fluid. J. Fluid Mech. 597, 415427.
Lamb, K. G. 2010 Energetics of internal solitary waves in a background sheared current. Nonlinear Process. Geophys. 17, 553568.
Lamb, K. G. & Nguyen, V. T. 2009 Calculating energy flux in internal solitary waves with an application to reflectance. J. Phys. Oceanogr. 39, 559580.
Lefauve, A., Muller, C. & Melet, A. 2015 A three-dimensional map of tidal dissipation over abyssal hills. J. Geophys. Res. Oceans 120, 47604777.
Llewellyn Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 32, 15441566.
Lyard, F., Lefevre, F., Letellier, T. & Francis, O. 2006 Modelling the global ocean tides: modern insights from FES20042004. Ocean Dyn. 56, 394415.
Mathur, M., Carter, G. S. & Peacock, T. 2016 Internal tide generation using Green function analysis: to WKB or not to WKB. J. Phys. Oceanogr. 46, 21572168.
Matthews, J. P., Aiki, H., Masuda, S., Awaji, T. & Ishikawa, Y. 2011 Monsoon regulation of Lombok Strait internal waves. J. Geophys. Res. 116, C05007.
Mercier, M. J., Mathur, M., Gostiaux, L., Gerkema, T., Magalhães, J. M., Da Silva, J. C. B. & Dauxois, T. 2012 Soliton generation by internal tidal beams impinging on a pycnocline: laboratory experiments. J. Fluid Mech. 704, 3760.
Munk, W. & Wunsch, C. 1998 Abyssal recipes. Part II. Energetics of tidal and wind mixing. Deep-Sea Res. 45, 19772010.
Nash, J. D., Alford, M. H. & Kunze, E. 2005 Estimating internal wave energy fluxes in the ocean. J. Atmos. Ocean. Technol. 22, 15511570.
Nikurashin, M. & Ferrari, R. 2013 Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett. 40, 31333137.
Pickering, A., Alford, M., Nash, J., Rainville, L., Buijsman, M., Ko, D. S. & Lim, B. 2015 Structure and variability of internal tides in Luzon Strait. J. Phys. Oceanogr. 45, 15741594.
Polzin, K. L., Toole, J. M., Ledwell, J. R. & Schmitt, R. W. 1997 Spatial variability of turbulent mixing in the abyssal ocean. Science 276, 9396.
Scott, R. B., Goff, J. A., Naveira Garabato, A. C. & Nurser, A. J. G. 2011 Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res. 116, C09029.
Scotti, A., Beardsley, R. & Butman, B. 2006 On the interpretation of energy and energy fluxes of nonlinear internal waves: an example from Massachusetts Bay. J. Fluid Mech. 561, 103112.
Shepherd, T. G. 1993 A unified theory of available potential energy. Atmos.-Ocean 31, 126.
da Silva, J. C. B., New, A. I. & Magalhaes, J. M. 2011 On the structure and propagation of internal solitary waves generated at the Mascarene plateau in the Indian ocean. Deep-Sea Res. I 58, 229240.
Waterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E., Simmons, H. L., Polzin, K. L., St. Laurent, L. C., Sun, O. M., Pinkel, R. et al. 2014 Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 44, 18541872.
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Internal wave generation by tidal flow over a two-dimensional ridge: energy flux asymmetries induced by a steady surface trapped current

  • Kevin G. Lamb (a1) and M. Dunphy (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed