Skip to main content Accessibility help
×
Home

Intermittency route to self-excited chaotic thermoacoustic oscillations

  • Yu Guan (a1), Vikrant Gupta (a2) and Larry K. B. Li (a1)

Abstract

In nonlinear dynamics, there are three classic routes to chaos, namely the period-doubling route, the Ruelle–Takens–Newhouse route and the intermittency route. The first two routes have previously been observed in self-excited thermoacoustic systems, but the third has not. In this experimental study, we present evidence of the intermittency route to chaos in the self-excited regime of a prototypical thermoacoustic system – a laminar flame-driven Rijke tube. We identify the intermittency to be of type II from the Pomeau–Manneville scenario through an analysis of (i) the probability distribution of the quiescent epochs between successive bursts of chaos, (ii) the first return map, and (iii) the recurrence plot. By establishing the last of the three classic routes to chaos, this study strengthens the universality of how strange attractors arise in self-excited thermoacoustic systems, paving the way for the application of generic suppression strategies based on chaos control.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Intermittency route to self-excited chaotic thermoacoustic oscillations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Intermittency route to self-excited chaotic thermoacoustic oscillations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Intermittency route to self-excited chaotic thermoacoustic oscillations
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: larryli@ust.hk

References

Hide All
Boudy, F., Durox, D., Schuller, T. & Candel, S. 2012 Nonlinear flame describing function analysis of galloping limit cycles featuring chaotic states in premixed combustors. In ASME Turbo Expo, pp. 713724. American Society of Mechanical Engineers.
Chiocchini, S., Pagliaroli, T., Camussi, R. & Giacomazzi, E. 2017 Chaotic and linear statistics analysis in thermoacoustic instability detection. J. Propul. Power 34 (1), 1526.
Domen, S., Gotoda, H., Kuriyama, T., Okuno, Y. & Tachibana, S. 2015 Detection and prevention of blowout in a lean premixed gas-turbine model combustor using the concept of dynamical system theory. Proc. Combust. Inst. 35 (3), 32453253.
Eckmann, J. P., Kamphorst, S. O. & Ruelle, D. 1987 Recurrence plots of dynamical systems. Eur. Phys. Lett. 4 (9), 973977.
Feigenbaum, M. J. 1978 Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19 (1), 2552.
Fichera, A., Losenno, C. & Pagano, A. 2001 Experimental analysis of thermo-acoustic combustion instability. Appl. Energ. 70 (2), 179191.
Gollub, J. P. & Benson, S. V. 1980 Many routes to turbulent convection. J. Fluid Mech. 100 (3), 449470.
Gotoda, H., Nikimoto, H., Miyano, T. & Tachibana, S. 2011 Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos 21 (1), 013124.
Gotoda, H., Shinoda, Y., Kobayashi, M., Okuno, Y. & Tachibana, S. 2014 Detection and control of combustion instability based on the concept of dynamical system theory. Phys. Rev. E 89 (2), 022910.
Gottwald, G. A. & Melbourne, I. 2004 A new test for chaos in deterministic systems. Proc. R. Soc. Lond. A 460 (2042), 603611.
Grassberger, P. & Procaccia, I. 1983 Characterization of strange attractors. Phys. Rev. Lett. 50 (5), 346349.
Guan, Y., Gupta, V., Kashinath, K. & Li, L. K. B. 2019a Open-loop control of periodic thermoacoustic oscillations: experiments and low-order modelling in a synchronization framework. Proc. Combust. Inst. 37, 53155323.
Guan, Y., Gupta, V., Wan, M. & Li, L. K. B. 2019b Forced synchronization of quasiperiodic oscillations in a thermoacoustic system. J. Fluid Mech. 879, 390421.
Guan, Y., Li, L. K. B., Ahn, B. & Kim, K. T. 2019c Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode. Chaos 29 (5), 053124.
Guan, Y., Murugesan, M. & Li, L. K. B. 2018 Strange nonchaotic and chaotic attractors in a self-excited thermoacoustic oscillator subjected to external periodic forcing. Chaos 28 (9), 093109.
Hammer, P. W., Platt, N., Hammel, S. M., Heagy, J. F. & Lee, B. D. 1994 Experimental observation of on-off intermittency. Phys. Rev. Lett. 73 (8), 1095.
Hilborn, R. C. 2000 Chaos and Nonlinear Dynamics. Oxford University Press.
Huhn, F. & Magri, L. 2020 Stability, sensitivity and optimisation of chaotic acoustic oscillations. J. Fluid Mech. 882, A24.
Juniper, M. P. & Sujith, R. I. 2018 Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech. 50, 661689.
Kabiraj, L., Saurabh, A., Karimi, N., Sailor, A., Mastorakos, E., Dowling, A. P. & Paschereit, C. O. 2015 Chaos in an imperfectly premixed model combustor. Chaos 25 (2), 023101.
Kabiraj, L., Saurabh, A., Wahi, P. & Sujith, R. I. 2012 Route to chaos for combustion instability in ducted laminar premixed flames. Chaos 22 (2), 023129.
Kabiraj, L. & Sujith, R. I. 2012 Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376397.
Kashinath, K., Waugh, I. C. & Juniper, M. P. 2014 Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. J. Fluid Mech. 761, 399430.
Keanini, R., Yu, K. & Daily, J. 1989 Evidence of a strange attractor in ramjet combustion. In 27th AIAA Aerospace Sciences Meeting, p. 624. American Institute of Aeronautics and Astronautics.
Klimaszewska, K. & Żebrowski, J. J. 2009 Detection of the type of intermittency using characteristic patterns in recurrence plots. Phys. Rev. E 80 (2), 026214.
Kulp, C. W. & Zunino, L. 2014 Discriminating chaotic and stochastic dynamics through the permutation spectrum test. Chaos 24 (3), 033116.
Lei, S. & Turan, A. 2009 Nonlinear/chaotic behaviour in thermo-acoustic instability. Combust. Theor. Model. 13 (3), 541557.
Li, L. K. B. & Juniper, M. P. 2013a Lock-in and quasiperiodicity in a forced hydrodynamically self-excited jet. J. Fluid Mech. 726, 624655.
Li, L. K. B. & Juniper, M. P. 2013b Phase trapping and slipping in a forced hydrodynamically self-excited jet. J. Fluid Mech. 735, R5.
Lieuwen, T. C. & Yang, V. 2005 Combustion Instabilities in Gas Turbine Engines. American Institute of Aeronautics and Astronautics.
Murayama, S., Kinugawa, H., Tokuda, I. T. & Gotoda, H. 2018 Characterization and detection of thermoacoustic combustion oscillations based on statistical complexity and complex-network theory. Phys. Rev. E 97 (2), 022223.
Murugesan, M. & Sujith, R. I. 2015 Combustion noise is scale-free: transition from scale-free to order at the onset of thermoacoustic instability. J. Fluid Mech. 772, 225245.
Nair, V. & Sujith, R. I. 2014 Multifractality in combustion noise: predicting an impending combustion instability. J. Fluid Mech. 747, 635655.
Nair, V., Thampi, G., Karuppusamy, S., Gopalan, S. & Sujith, R. I. 2013 Loss of chaos in combustion noise as a precursor of impending combustion instability. Intl J. Spray Combust. 5 (4), 273290.
Nair, V., Thampi, G. & Sujith, R. I. 2014 Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 756, 470487.
Newhouse, S., Ruelle, D. & Takens, F. 1978 Occurrence of strange Axiom A attractors near quasiperiodic flows on t m, m⩾3. Commun. Math. Phys. 64 (1), 3540.
Nuñez, A., Lacasa, L., Valero, E., Gómez, J. P. & Luque, B. 2012 Detecting series periodicity with horizontal visibility graphs. Intl J. Bifurcation Chaos 22 (07), 1250160.
Orchini, A., Illingworth, S. J. & Juniper, M. P. 2015 Frequency domain and time domain analysis of thermoacoustic oscillations with wave-based acoustics. J. Fluid Mech. 775, 387414.
Pawar, S. A., Vishnu, R., Vadivukkarasan, M., Panchagnula, M. V. & Sujith, R. I. 2016 Intermittency route to combustion instability in a laboratory spray combustor. Trans. ASME J. Engng Gas Turbines Power 138 (4), 041505.
Poinsot, T. 2017 Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36 (1), 128.
Pomeau, Y. & Manneville, P. 1980 Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74 (2), 189197.
Sacher, J., Elsässer, W. & Göbel, E. O. 1989 Intermittency in the coherence collapse of a semiconductor laser with external feedback. Phys. Rev. Lett. 63 (20), 22242227.
Schöll, E. & Schuster, H. G. 2008 Handbook of Chaos Control. John Wiley & Sons.
Schuster, H. G. & Just, W. 2006 Deterministic Chaos. John Wiley & Sons.
Sterling, J. D. 1993 Nonlinear analysis and modelling of combustion instabilities in a laboratory combustor. Combust. Sci. Technol. 89 (1–4), 167179.
Subramanian, P., Mariappan, S., Sujith, R. I. & Wahi, P. 2010 Bifurcation analysis of thermoacoustic instability in a horizontal Rijke tube. Intl J. Spray Combust. 2, 325355.
Suresh, S. 1998 Fatigue of Materials. Cambridge University Press.
Tony, J., Gopalakrishnan, E. A., Sreelekha, E. & Sujith, R. I. 2015 Detecting deterministic nature of pressure measurements from a turbulent combustor. Phys. Rev. E 92 (6), 062902.
Unni, V. R. & Sujith, R. I. 2017 Flame dynamics during intermittency in a turbulent combustor. Proc. Combust. Inst. 36 (3), 37913798.
Vishnu, R., Sujith, R. I. & Aghalayam, P. 2015 Role of flame dynamics on the bifurcation characteristics of a ducted V-flame. Combust. Sci. Technol. 187 (6), 894905.
Waugh, I. C., Kashinath, K. & Juniper, M. P. 2014 Matrix-free continuation of limit cycles and their bifurcations for a ducted premixed flame. J. Fluid Mech. 759, 127.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Intermittency route to self-excited chaotic thermoacoustic oscillations

  • Yu Guan (a1), Vikrant Gupta (a2) and Larry K. B. Li (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.