Skip to main content Accessibility help
×
Home

Interaction of a pair of ferrofluid drops in a rotating magnetic field

  • Mingfeng Qiu (a1), Shahriar Afkhami (a2), Ching-Yao Chen (a3) and James J. Feng (a1) (a4)

Abstract

We use two-dimensional numerical simulation to study the interaction between a pair of ferrofluid drops suspended in a rotating uniform magnetic field. Numerical results show four distinct regimes over the range of parameters tested: independent spin, planetary motion, drop locking and direct coalescence. These are in qualitative agreement with experiments, and the transition between them can be understood from the competition between magnetophoretic forces and viscous drag. We further analyse in detail the planetary motion, i.e. the revolution of the drops around each other while each spins in phase with the external magnetic field. For drops, as opposed to solid microspheres, the interaction is dominated by viscous sweeping, a form of hydrodynamic interaction. Magnetic dipole–dipole interaction via mutual induction only plays a secondary role. This insight helps us explain novel features of the planetary revolution of the ferrofluid drops that cannot be explained by a dipole model, including the increase of the angular velocity of planetary motion with the rotational rate of the external field, and the attainment of a limit separation between the drops that is independent of the initial separation.

Copyright

Corresponding author

Email address for correspondence: james.feng@ubc.ca

References

Hide All
Afkhami, S., Renardy, Y., Renardy, M., Riffle, J. S. & St Pierre, T. 2008 Field-induced motion of ferrofluid droplets through immiscible viscous media. J. Fluid Mech. 610, 363380.
Afkhami, S., Tyler, A. J., Renardy, Y., Renardy, M., Pierre, T. G. St., Woodward, R. C. & Riffle, J. S. 2010 Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J. Fluid Mech. 663, 358384.
Bacri, J. C., Cēbers, A. O. & Perzynski, R. 1994 Behavior of a magnetic fluid microdrop in a rotating magnetic field. Phys. Rev. Lett. 72, 27052708.
Bacri, J. C., Drame, C., Kashevsky, B., Neveu, S., Perzynski, R. & Redon, C. 1995 Motion of a pair of rigid ferrofluid drops in a rotating magnetic field. In Trends in Colloid and Interface Science IX, Progress in Colloid and Polymer Science, vol. 98, pp. 124127. Springer.
Bacri, J. C. & Salin, D. 1982 Instability of ferrofluid magnetic drops under magnetic field. J. Phys. Lett. 43, 649654.
Bailey, R. L. 1983 Lesser known applications of ferrofluids. J. Magn. Magn. Mater. 39, 178182.
Baygents, J. C., Rivette, N. J. & Stone, H. A. 1998 Electrohydrodynamic deformation and interaction of drop pairs. J. Fluid Mech. 368, 359375.
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100, 335354.
Cēbers, A. 2002 Dynamics of an elongated magnetic droplet in a rotating field. Phys. Rev. E 66, 061402.
Cēbers, A. & Lācis, S. 1995 Magnetic fluid free surface instabilities in high-frequency rotating magnetic fields. Braz. J. Phys. 25, 101111.
Chen, C.-Y., Hsueh, H.-C., Wang, S.-Y. & Li, Y.-H. 2015 Self-assembly and novel planetary motion of ferrofluid drops in a rotational magnetic field. Microfluid Nanofluid 18, 795806.
Chen, C.-Y. & Li, C.-S. 2010 Ordered microdroplet formations of thin ferrofluid layer breakups. Phys. Fluids 22, 014105.
Conroy, D. T. & Matar, O. K. 2015 Thin viscous ferrofluid film in a magnetic field. Phys. Fluids 27, 092102.
Cowley, M. D. & Rosensweig, R. E. 1967 The interfacial stability of a ferromagnetic fluid. J. Fluid Mech. 30, 671688.
Erdmanis, J., Kitenbergs, G., Perzynski, R. & Cēbers, A. 2017 Magnetic micro-droplet in rotating field: numerical simulation and comparison with experiment. J. Fluid Mech. 821, 266295.
Falcucci, G., Chiatti, G., Succi, S., Mohamad, A. A. & Kuzmin, A. 2009 Rupture of a ferrofluid droplet in external magnetic fields using a single-component lattice Boltzmann model for nonideal fluids. Phys. Rev. E 79, 056706.
Feng, J. J. & Chen, C.-Y. 2016 Interfacial dynamics in complex fluids. J. Fluid Sci. Tech. 11, JFST0021.
Fischer, B., Huke, B., Lücke, M. & Hempelmann, R. 2005 Brownian relaxation of magnetic colloids. J. Magn. Magn. Mater. 289, 7477.
Gao, Y., Hulsen, M. A., Kang, T. G. & den Toonder, J. M. J. 2012 Numerical and experimental study of a rotating magnetic particle chain in a viscous fluid. Phys. Rev. E 86, 041503.
Garton, C. G. & Krasucki, Z. 1964 Bubbles in insulating liquids: stability in an electric field. Proc. R. Soc. Lond. A 280, 211226.
Helgesen, G., Pieranski, P. & Skjeltorp, A. T. 1990 Dynamic behavior of simple magnetic hole systems. Phys. Rev. A 42, 72717280.
Korlie, M. S., Mukherjee, A., Nita, B. G., Stevens, J. G., Trubatch, A. D. & Yecko, P. 2008 Modeling bubbles and droplets in magnetic fluids. J. Phys.: Condens. Matter 20, 204143.
Lācis, S. 1999 Bending of ferrofluid droplet in rotating magnetic field. J. Magn. Magn. Mater. 201, 335338.
Lamb, H. 1911 XV. On the uniform motion of a sphere through a viscous fluid. Phil. Mag. 21, 112121.
Lebedev, A. V., Engel, A., Morozov, K. I. & Bauke, H. 2003 Ferrofluid drops in rotating magnetic fields. New J. Phys. 5, 57.
Lebedev, A. V. & Morozov, K. I. 1997 Dynamics of a drop of magnetic liquid in a rotating magnetic field. J. Expl Theor. Phys. 65, 160165.
Lee, W. K., Scardovelli, R., Trubatch, A. D. & Yecko, P. 2010 Numerical, experimental, and theoretical investigation of bubble aggregation and deformation in magnetic fluids. Phys. Rev. E 82, 016302.
López-Herrera, J. M., Popinet, S. & Herrada, M. A. 2011 A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Comput. Phys. 230, 19391955.
Lu, C.-Y.2017 Dynamics of ferrofluid drops in a rotational field. Master’s thesis, National Chiao Tung University, Hsinchu, Taiwan, ROC.
Mefford, O. T., Woodward, R. C., Goff, J. D., Vadala, T. P., Pierre, T. G. St., Dailey, J. P. & Riffle, J. S. 2007 Field-induced motion of ferrofluids through immiscible viscous media: testbed for restorative treatment of retinal detachment. J. Magn. Magn. Mater. 311, 347353.
Miranda, J. A. 2000 Rotating Hele-Shaw cells with ferrofluids. Phys. Rev. E 62, 29852988.
Morozov, K. I., Engel, A. & Lebedev, A. V. 2002 Shape transformations in rotating ferrofluid drops. Europhys. Lett. 58, 229235.
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572600.
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.
Rosensweig, R. E. 1982 Magnetic fluids. Sci. Am. 247, 136145.
Rowghanian, P., Meinhart, C. D. & Campàs, O. 2016 Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J. Fluid Mech. 802, 245262.
Serwane, F., Mongera, A., Rowghanian, P., Kealhofer, D. A., Lucio, A. A., Hockenbery, Z. M. & Campàs, O. 2017 In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Meth. 14, 181186.
Sherwood, J. D. 1991 The deformation of a fluid drop in an electric field: a slender-body analysis. J. Phys. A 24, 40474053.
Shliomis, M. I. 1972 Effective viscosity of magnetic suspensions. J. Exp. Theor. Phys. 34, 12911294.
Shliomis, M. I. & Morozov, K. I. 1994 Negative viscosity of ferrofluid under alternating magnetic field. Phys. Fluids 6, 28552861.
Stone, H. A., Lister, J. R. & Brenner, M. P. 1999 Drops with conical ends in electric and magnetic fields. Proc. R. Soc. Lond. A 455, 329347.
Tackett, R. J., Thakur, J., Mosher, N., Perkins-Harbin, E., Kumon, R. E., Wang, L., Rablau, C. & Vaishnava, P. P. 2015 A method for measuring the Néel relaxation time in a frozen ferrofluid. J. Appl. Phys. 118, 064701.
Tan, S.-H., Nguyen, N.-T., Yobas, L. & Kang, T. G. 2010 Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J. Micromech. Microengng 20, 045004.
Timonen, J. V. I., Latikka, M., Leibler, L., Ras, R. H. A. & Ikkala, O. 2013 Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341, 253257.
Voltairas, P. A., Fotiadis, D. I. & Michalis, L. K. 2002 Hydrodynamics of magnetic drug targeting. J. Biomech. 35, 813821.
Yue, P., Feng, J. J., Liu, C. & Shen, J. 2005 Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 129, 163176.
Zhu, G.-P., Nguyen, N.-T., Ramanujan, R. V. & Huang, X.-Y. 2011 Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir 27, 1483414841.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed